mirror of
https://github.com/Qortal/pirate-librustzcash.git
synced 2025-07-30 03:51:22 +00:00
Add 'sapling-crypto/' from commit '21084bde2019c04bd34208e63c3560fe2c02fb0e'
git-subtree-dir: sapling-crypto git-subtree-mainline:9f748554d0
git-subtree-split:21084bde20
This commit is contained in:
3
sapling-crypto/.gitignore
vendored
Normal file
3
sapling-crypto/.gitignore
vendored
Normal file
@@ -0,0 +1,3 @@
|
||||
/target/
|
||||
**/*.rs.bk
|
||||
Cargo.lock
|
14
sapling-crypto/COPYRIGHT
Normal file
14
sapling-crypto/COPYRIGHT
Normal file
@@ -0,0 +1,14 @@
|
||||
Copyrights in the "sapling-crypto" library are retained by their contributors. No
|
||||
copyright assignment is required to contribute to the "sapling-crypto" library.
|
||||
|
||||
The "sapling-crypto" library is licensed under either of
|
||||
|
||||
* Apache License, Version 2.0, (see ./LICENSE-APACHE or http://www.apache.org/licenses/LICENSE-2.0)
|
||||
* MIT license (see ./LICENSE-MIT or http://opensource.org/licenses/MIT)
|
||||
|
||||
at your option.
|
||||
|
||||
Unless you explicitly state otherwise, any contribution intentionally
|
||||
submitted for inclusion in the work by you, as defined in the Apache-2.0
|
||||
license, shall be dual licensed as above, without any additional terms or
|
||||
conditions.
|
31
sapling-crypto/Cargo.toml
Normal file
31
sapling-crypto/Cargo.toml
Normal file
@@ -0,0 +1,31 @@
|
||||
[package]
|
||||
authors = ["Sean Bowe <sean@z.cash>"]
|
||||
description = "Cryptographic library for Zcash Sapling"
|
||||
documentation = "https://github.com/zcash-hackworks/sapling"
|
||||
homepage = "https://github.com/zcash-hackworks/sapling"
|
||||
license = "MIT/Apache-2.0"
|
||||
name = "sapling-crypto"
|
||||
repository = "https://github.com/zcash-hackworks/sapling"
|
||||
version = "0.0.1"
|
||||
|
||||
[dependencies.pairing]
|
||||
version = "0.14.2"
|
||||
features = ["expose-arith"]
|
||||
|
||||
[dependencies]
|
||||
rand = "0.4"
|
||||
digest = "0.7"
|
||||
bellman = "0.1"
|
||||
byteorder = "1"
|
||||
|
||||
[dependencies.blake2-rfc]
|
||||
git = "https://github.com/gtank/blake2-rfc"
|
||||
rev = "7a5b5fc99ae483a0043db7547fb79a6fa44b88a9"
|
||||
|
||||
[dev-dependencies]
|
||||
hex-literal = "0.1"
|
||||
rust-crypto = "0.2"
|
||||
|
||||
[features]
|
||||
default = ["u128-support"]
|
||||
u128-support = ["pairing/u128-support"]
|
201
sapling-crypto/LICENSE-APACHE
Normal file
201
sapling-crypto/LICENSE-APACHE
Normal file
@@ -0,0 +1,201 @@
|
||||
Apache License
|
||||
Version 2.0, January 2004
|
||||
http://www.apache.org/licenses/
|
||||
|
||||
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
|
||||
|
||||
1. Definitions.
|
||||
|
||||
"License" shall mean the terms and conditions for use, reproduction,
|
||||
and distribution as defined by Sections 1 through 9 of this document.
|
||||
|
||||
"Licensor" shall mean the copyright owner or entity authorized by
|
||||
the copyright owner that is granting the License.
|
||||
|
||||
"Legal Entity" shall mean the union of the acting entity and all
|
||||
other entities that control, are controlled by, or are under common
|
||||
control with that entity. For the purposes of this definition,
|
||||
"control" means (i) the power, direct or indirect, to cause the
|
||||
direction or management of such entity, whether by contract or
|
||||
otherwise, or (ii) ownership of fifty percent (50%) or more of the
|
||||
outstanding shares, or (iii) beneficial ownership of such entity.
|
||||
|
||||
"You" (or "Your") shall mean an individual or Legal Entity
|
||||
exercising permissions granted by this License.
|
||||
|
||||
"Source" form shall mean the preferred form for making modifications,
|
||||
including but not limited to software source code, documentation
|
||||
source, and configuration files.
|
||||
|
||||
"Object" form shall mean any form resulting from mechanical
|
||||
transformation or translation of a Source form, including but
|
||||
not limited to compiled object code, generated documentation,
|
||||
and conversions to other media types.
|
||||
|
||||
"Work" shall mean the work of authorship, whether in Source or
|
||||
Object form, made available under the License, as indicated by a
|
||||
copyright notice that is included in or attached to the work
|
||||
(an example is provided in the Appendix below).
|
||||
|
||||
"Derivative Works" shall mean any work, whether in Source or Object
|
||||
form, that is based on (or derived from) the Work and for which the
|
||||
editorial revisions, annotations, elaborations, or other modifications
|
||||
represent, as a whole, an original work of authorship. For the purposes
|
||||
of this License, Derivative Works shall not include works that remain
|
||||
separable from, or merely link (or bind by name) to the interfaces of,
|
||||
the Work and Derivative Works thereof.
|
||||
|
||||
"Contribution" shall mean any work of authorship, including
|
||||
the original version of the Work and any modifications or additions
|
||||
to that Work or Derivative Works thereof, that is intentionally
|
||||
submitted to Licensor for inclusion in the Work by the copyright owner
|
||||
or by an individual or Legal Entity authorized to submit on behalf of
|
||||
the copyright owner. For the purposes of this definition, "submitted"
|
||||
means any form of electronic, verbal, or written communication sent
|
||||
to the Licensor or its representatives, including but not limited to
|
||||
communication on electronic mailing lists, source code control systems,
|
||||
and issue tracking systems that are managed by, or on behalf of, the
|
||||
Licensor for the purpose of discussing and improving the Work, but
|
||||
excluding communication that is conspicuously marked or otherwise
|
||||
designated in writing by the copyright owner as "Not a Contribution."
|
||||
|
||||
"Contributor" shall mean Licensor and any individual or Legal Entity
|
||||
on behalf of whom a Contribution has been received by Licensor and
|
||||
subsequently incorporated within the Work.
|
||||
|
||||
2. Grant of Copyright License. Subject to the terms and conditions of
|
||||
this License, each Contributor hereby grants to You a perpetual,
|
||||
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
||||
copyright license to reproduce, prepare Derivative Works of,
|
||||
publicly display, publicly perform, sublicense, and distribute the
|
||||
Work and such Derivative Works in Source or Object form.
|
||||
|
||||
3. Grant of Patent License. Subject to the terms and conditions of
|
||||
this License, each Contributor hereby grants to You a perpetual,
|
||||
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
||||
(except as stated in this section) patent license to make, have made,
|
||||
use, offer to sell, sell, import, and otherwise transfer the Work,
|
||||
where such license applies only to those patent claims licensable
|
||||
by such Contributor that are necessarily infringed by their
|
||||
Contribution(s) alone or by combination of their Contribution(s)
|
||||
with the Work to which such Contribution(s) was submitted. If You
|
||||
institute patent litigation against any entity (including a
|
||||
cross-claim or counterclaim in a lawsuit) alleging that the Work
|
||||
or a Contribution incorporated within the Work constitutes direct
|
||||
or contributory patent infringement, then any patent licenses
|
||||
granted to You under this License for that Work shall terminate
|
||||
as of the date such litigation is filed.
|
||||
|
||||
4. Redistribution. You may reproduce and distribute copies of the
|
||||
Work or Derivative Works thereof in any medium, with or without
|
||||
modifications, and in Source or Object form, provided that You
|
||||
meet the following conditions:
|
||||
|
||||
(a) You must give any other recipients of the Work or
|
||||
Derivative Works a copy of this License; and
|
||||
|
||||
(b) You must cause any modified files to carry prominent notices
|
||||
stating that You changed the files; and
|
||||
|
||||
(c) You must retain, in the Source form of any Derivative Works
|
||||
that You distribute, all copyright, patent, trademark, and
|
||||
attribution notices from the Source form of the Work,
|
||||
excluding those notices that do not pertain to any part of
|
||||
the Derivative Works; and
|
||||
|
||||
(d) If the Work includes a "NOTICE" text file as part of its
|
||||
distribution, then any Derivative Works that You distribute must
|
||||
include a readable copy of the attribution notices contained
|
||||
within such NOTICE file, excluding those notices that do not
|
||||
pertain to any part of the Derivative Works, in at least one
|
||||
of the following places: within a NOTICE text file distributed
|
||||
as part of the Derivative Works; within the Source form or
|
||||
documentation, if provided along with the Derivative Works; or,
|
||||
within a display generated by the Derivative Works, if and
|
||||
wherever such third-party notices normally appear. The contents
|
||||
of the NOTICE file are for informational purposes only and
|
||||
do not modify the License. You may add Your own attribution
|
||||
notices within Derivative Works that You distribute, alongside
|
||||
or as an addendum to the NOTICE text from the Work, provided
|
||||
that such additional attribution notices cannot be construed
|
||||
as modifying the License.
|
||||
|
||||
You may add Your own copyright statement to Your modifications and
|
||||
may provide additional or different license terms and conditions
|
||||
for use, reproduction, or distribution of Your modifications, or
|
||||
for any such Derivative Works as a whole, provided Your use,
|
||||
reproduction, and distribution of the Work otherwise complies with
|
||||
the conditions stated in this License.
|
||||
|
||||
5. Submission of Contributions. Unless You explicitly state otherwise,
|
||||
any Contribution intentionally submitted for inclusion in the Work
|
||||
by You to the Licensor shall be under the terms and conditions of
|
||||
this License, without any additional terms or conditions.
|
||||
Notwithstanding the above, nothing herein shall supersede or modify
|
||||
the terms of any separate license agreement you may have executed
|
||||
with Licensor regarding such Contributions.
|
||||
|
||||
6. Trademarks. This License does not grant permission to use the trade
|
||||
names, trademarks, service marks, or product names of the Licensor,
|
||||
except as required for reasonable and customary use in describing the
|
||||
origin of the Work and reproducing the content of the NOTICE file.
|
||||
|
||||
7. Disclaimer of Warranty. Unless required by applicable law or
|
||||
agreed to in writing, Licensor provides the Work (and each
|
||||
Contributor provides its Contributions) on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
|
||||
implied, including, without limitation, any warranties or conditions
|
||||
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
|
||||
PARTICULAR PURPOSE. You are solely responsible for determining the
|
||||
appropriateness of using or redistributing the Work and assume any
|
||||
risks associated with Your exercise of permissions under this License.
|
||||
|
||||
8. Limitation of Liability. In no event and under no legal theory,
|
||||
whether in tort (including negligence), contract, or otherwise,
|
||||
unless required by applicable law (such as deliberate and grossly
|
||||
negligent acts) or agreed to in writing, shall any Contributor be
|
||||
liable to You for damages, including any direct, indirect, special,
|
||||
incidental, or consequential damages of any character arising as a
|
||||
result of this License or out of the use or inability to use the
|
||||
Work (including but not limited to damages for loss of goodwill,
|
||||
work stoppage, computer failure or malfunction, or any and all
|
||||
other commercial damages or losses), even if such Contributor
|
||||
has been advised of the possibility of such damages.
|
||||
|
||||
9. Accepting Warranty or Additional Liability. While redistributing
|
||||
the Work or Derivative Works thereof, You may choose to offer,
|
||||
and charge a fee for, acceptance of support, warranty, indemnity,
|
||||
or other liability obligations and/or rights consistent with this
|
||||
License. However, in accepting such obligations, You may act only
|
||||
on Your own behalf and on Your sole responsibility, not on behalf
|
||||
of any other Contributor, and only if You agree to indemnify,
|
||||
defend, and hold each Contributor harmless for any liability
|
||||
incurred by, or claims asserted against, such Contributor by reason
|
||||
of your accepting any such warranty or additional liability.
|
||||
|
||||
END OF TERMS AND CONDITIONS
|
||||
|
||||
APPENDIX: How to apply the Apache License to your work.
|
||||
|
||||
To apply the Apache License to your work, attach the following
|
||||
boilerplate notice, with the fields enclosed by brackets "[]"
|
||||
replaced with your own identifying information. (Don't include
|
||||
the brackets!) The text should be enclosed in the appropriate
|
||||
comment syntax for the file format. We also recommend that a
|
||||
file or class name and description of purpose be included on the
|
||||
same "printed page" as the copyright notice for easier
|
||||
identification within third-party archives.
|
||||
|
||||
Copyright [yyyy] [name of copyright owner]
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
23
sapling-crypto/LICENSE-MIT
Normal file
23
sapling-crypto/LICENSE-MIT
Normal file
@@ -0,0 +1,23 @@
|
||||
Permission is hereby granted, free of charge, to any
|
||||
person obtaining a copy of this software and associated
|
||||
documentation files (the "Software"), to deal in the
|
||||
Software without restriction, including without
|
||||
limitation the rights to use, copy, modify, merge,
|
||||
publish, distribute, sublicense, and/or sell copies of
|
||||
the Software, and to permit persons to whom the Software
|
||||
is furnished to do so, subject to the following
|
||||
conditions:
|
||||
|
||||
The above copyright notice and this permission notice
|
||||
shall be included in all copies or substantial portions
|
||||
of the Software.
|
||||
|
||||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF
|
||||
ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED
|
||||
TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
|
||||
PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT
|
||||
SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
|
||||
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
|
||||
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR
|
||||
IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
|
||||
DEALINGS IN THE SOFTWARE.
|
23
sapling-crypto/README.md
Normal file
23
sapling-crypto/README.md
Normal file
@@ -0,0 +1,23 @@
|
||||
# sapling-crypto
|
||||
|
||||
This repository contains a (work-in-progress) implementation of Zcash's "Sapling" cryptography.
|
||||
|
||||
## Security Warnings
|
||||
|
||||
This library is currently under development and has not been reviewed.
|
||||
|
||||
## License
|
||||
|
||||
Licensed under either of
|
||||
|
||||
* Apache License, Version 2.0, ([LICENSE-APACHE](LICENSE-APACHE) or http://www.apache.org/licenses/LICENSE-2.0)
|
||||
* MIT license ([LICENSE-MIT](LICENSE-MIT) or http://opensource.org/licenses/MIT)
|
||||
|
||||
at your option.
|
||||
|
||||
### Contribution
|
||||
|
||||
Unless you explicitly state otherwise, any contribution intentionally
|
||||
submitted for inclusion in the work by you, as defined in the Apache-2.0
|
||||
license, shall be dual licensed as above, without any additional terms or
|
||||
conditions.
|
23
sapling-crypto/benches/pedersen_hash.rs
Normal file
23
sapling-crypto/benches/pedersen_hash.rs
Normal file
@@ -0,0 +1,23 @@
|
||||
#![feature(test)]
|
||||
|
||||
extern crate rand;
|
||||
extern crate test;
|
||||
extern crate pairing;
|
||||
extern crate sapling_crypto;
|
||||
|
||||
use rand::{Rand, thread_rng};
|
||||
use pairing::bls12_381::Bls12;
|
||||
use sapling_crypto::jubjub::JubjubBls12;
|
||||
use sapling_crypto::pedersen_hash::{pedersen_hash, Personalization};
|
||||
|
||||
#[bench]
|
||||
fn bench_pedersen_hash(b: &mut test::Bencher) {
|
||||
let params = JubjubBls12::new();
|
||||
let rng = &mut thread_rng();
|
||||
let bits = (0..510).map(|_| bool::rand(rng)).collect::<Vec<_>>();
|
||||
let personalization = Personalization::MerkleTree(31);
|
||||
|
||||
b.iter(|| {
|
||||
pedersen_hash::<Bls12, _>(personalization, bits.clone(), ¶ms)
|
||||
});
|
||||
}
|
102
sapling-crypto/examples/bench.rs
Normal file
102
sapling-crypto/examples/bench.rs
Normal file
@@ -0,0 +1,102 @@
|
||||
extern crate sapling_crypto;
|
||||
extern crate bellman;
|
||||
extern crate rand;
|
||||
extern crate pairing;
|
||||
|
||||
use std::time::{Duration, Instant};
|
||||
use sapling_crypto::jubjub::{
|
||||
JubjubBls12,
|
||||
edwards,
|
||||
fs,
|
||||
};
|
||||
use sapling_crypto::circuit::sapling::{
|
||||
Spend
|
||||
};
|
||||
use sapling_crypto::primitives::{
|
||||
Diversifier,
|
||||
ProofGenerationKey,
|
||||
ValueCommitment
|
||||
};
|
||||
use bellman::groth16::*;
|
||||
use rand::{XorShiftRng, SeedableRng, Rng};
|
||||
use pairing::bls12_381::{Bls12, Fr};
|
||||
|
||||
const TREE_DEPTH: usize = 32;
|
||||
|
||||
fn main() {
|
||||
let jubjub_params = &JubjubBls12::new();
|
||||
let rng = &mut XorShiftRng::from_seed([0x3dbe6259, 0x8d313d76, 0x3237db17, 0xe5bc0654]);
|
||||
|
||||
println!("Creating sample parameters...");
|
||||
let groth_params = generate_random_parameters::<Bls12, _, _>(
|
||||
Spend {
|
||||
params: jubjub_params,
|
||||
value_commitment: None,
|
||||
proof_generation_key: None,
|
||||
payment_address: None,
|
||||
commitment_randomness: None,
|
||||
ar: None,
|
||||
auth_path: vec![None; TREE_DEPTH],
|
||||
anchor: None
|
||||
},
|
||||
rng
|
||||
).unwrap();
|
||||
|
||||
const SAMPLES: u32 = 50;
|
||||
|
||||
let mut total_time = Duration::new(0, 0);
|
||||
for _ in 0..SAMPLES {
|
||||
let value_commitment = ValueCommitment {
|
||||
value: 1,
|
||||
randomness: rng.gen()
|
||||
};
|
||||
|
||||
let nsk: fs::Fs = rng.gen();
|
||||
let ak = edwards::Point::rand(rng, jubjub_params).mul_by_cofactor(jubjub_params);
|
||||
|
||||
let proof_generation_key = ProofGenerationKey {
|
||||
ak: ak.clone(),
|
||||
nsk: nsk.clone()
|
||||
};
|
||||
|
||||
let viewing_key = proof_generation_key.into_viewing_key(jubjub_params);
|
||||
|
||||
let payment_address;
|
||||
|
||||
loop {
|
||||
let diversifier = Diversifier(rng.gen());
|
||||
|
||||
if let Some(p) = viewing_key.into_payment_address(
|
||||
diversifier,
|
||||
jubjub_params
|
||||
)
|
||||
{
|
||||
payment_address = p;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
let commitment_randomness: fs::Fs = rng.gen();
|
||||
let auth_path = vec![Some((rng.gen(), rng.gen())); TREE_DEPTH];
|
||||
let ar: fs::Fs = rng.gen();
|
||||
let anchor: Fr = rng.gen();
|
||||
|
||||
let start = Instant::now();
|
||||
let _ = create_random_proof(Spend {
|
||||
params: jubjub_params,
|
||||
value_commitment: Some(value_commitment),
|
||||
proof_generation_key: Some(proof_generation_key),
|
||||
payment_address: Some(payment_address),
|
||||
commitment_randomness: Some(commitment_randomness),
|
||||
ar: Some(ar),
|
||||
auth_path: auth_path,
|
||||
anchor: Some(anchor)
|
||||
}, &groth_params, rng).unwrap();
|
||||
total_time += start.elapsed();
|
||||
}
|
||||
let avg = total_time / SAMPLES;
|
||||
let avg = avg.subsec_nanos() as f64 / 1_000_000_000f64
|
||||
+ (avg.as_secs() as f64);
|
||||
|
||||
println!("Average proving time (in seconds): {}", avg);
|
||||
}
|
438
sapling-crypto/src/circuit/blake2s.rs
Normal file
438
sapling-crypto/src/circuit/blake2s.rs
Normal file
@@ -0,0 +1,438 @@
|
||||
use pairing::{
|
||||
Engine,
|
||||
};
|
||||
|
||||
use bellman::{
|
||||
SynthesisError,
|
||||
ConstraintSystem
|
||||
};
|
||||
|
||||
use super::boolean::{
|
||||
Boolean
|
||||
};
|
||||
|
||||
use super::uint32::{
|
||||
UInt32
|
||||
};
|
||||
|
||||
use super::multieq::MultiEq;
|
||||
|
||||
/*
|
||||
2.1. Parameters
|
||||
The following table summarizes various parameters and their ranges:
|
||||
| BLAKE2b | BLAKE2s |
|
||||
--------------+------------------+------------------+
|
||||
Bits in word | w = 64 | w = 32 |
|
||||
Rounds in F | r = 12 | r = 10 |
|
||||
Block bytes | bb = 128 | bb = 64 |
|
||||
Hash bytes | 1 <= nn <= 64 | 1 <= nn <= 32 |
|
||||
Key bytes | 0 <= kk <= 64 | 0 <= kk <= 32 |
|
||||
Input bytes | 0 <= ll < 2**128 | 0 <= ll < 2**64 |
|
||||
--------------+------------------+------------------+
|
||||
G Rotation | (R1, R2, R3, R4) | (R1, R2, R3, R4) |
|
||||
constants = | (32, 24, 16, 63) | (16, 12, 8, 7) |
|
||||
--------------+------------------+------------------+
|
||||
*/
|
||||
|
||||
const R1: usize = 16;
|
||||
const R2: usize = 12;
|
||||
const R3: usize = 8;
|
||||
const R4: usize = 7;
|
||||
|
||||
/*
|
||||
Round | 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 |
|
||||
----------+-------------------------------------------------+
|
||||
SIGMA[0] | 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 |
|
||||
SIGMA[1] | 14 10 4 8 9 15 13 6 1 12 0 2 11 7 5 3 |
|
||||
SIGMA[2] | 11 8 12 0 5 2 15 13 10 14 3 6 7 1 9 4 |
|
||||
SIGMA[3] | 7 9 3 1 13 12 11 14 2 6 5 10 4 0 15 8 |
|
||||
SIGMA[4] | 9 0 5 7 2 4 10 15 14 1 11 12 6 8 3 13 |
|
||||
SIGMA[5] | 2 12 6 10 0 11 8 3 4 13 7 5 15 14 1 9 |
|
||||
SIGMA[6] | 12 5 1 15 14 13 4 10 0 7 6 3 9 2 8 11 |
|
||||
SIGMA[7] | 13 11 7 14 12 1 3 9 5 0 15 4 8 6 2 10 |
|
||||
SIGMA[8] | 6 15 14 9 11 3 0 8 12 2 13 7 1 4 10 5 |
|
||||
SIGMA[9] | 10 2 8 4 7 6 1 5 15 11 9 14 3 12 13 0 |
|
||||
----------+-------------------------------------------------+
|
||||
*/
|
||||
|
||||
const SIGMA: [[usize; 16]; 10] = [
|
||||
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15],
|
||||
[14, 10, 4, 8, 9, 15, 13, 6, 1, 12, 0, 2, 11, 7, 5, 3],
|
||||
[11, 8, 12, 0, 5, 2, 15, 13, 10, 14, 3, 6, 7, 1, 9, 4],
|
||||
[7, 9, 3, 1, 13, 12, 11, 14, 2, 6, 5, 10, 4, 0, 15, 8],
|
||||
[9, 0, 5, 7, 2, 4, 10, 15, 14, 1, 11, 12, 6, 8, 3, 13],
|
||||
[2, 12, 6, 10, 0, 11, 8, 3, 4, 13, 7, 5, 15, 14, 1, 9],
|
||||
[12, 5, 1, 15, 14, 13, 4, 10, 0, 7, 6, 3, 9, 2, 8, 11],
|
||||
[13, 11, 7, 14, 12, 1, 3, 9, 5, 0, 15, 4, 8, 6, 2, 10],
|
||||
[6, 15, 14, 9, 11, 3, 0, 8, 12, 2, 13, 7, 1, 4, 10, 5],
|
||||
[10, 2, 8, 4, 7, 6, 1, 5, 15, 11, 9, 14, 3, 12, 13, 0]
|
||||
];
|
||||
|
||||
/*
|
||||
3.1. Mixing Function G
|
||||
The G primitive function mixes two input words, "x" and "y", into
|
||||
four words indexed by "a", "b", "c", and "d" in the working vector
|
||||
v[0..15]. The full modified vector is returned. The rotation
|
||||
constants (R1, R2, R3, R4) are given in Section 2.1.
|
||||
FUNCTION G( v[0..15], a, b, c, d, x, y )
|
||||
|
|
||||
| v[a] := (v[a] + v[b] + x) mod 2**w
|
||||
| v[d] := (v[d] ^ v[a]) >>> R1
|
||||
| v[c] := (v[c] + v[d]) mod 2**w
|
||||
| v[b] := (v[b] ^ v[c]) >>> R2
|
||||
| v[a] := (v[a] + v[b] + y) mod 2**w
|
||||
| v[d] := (v[d] ^ v[a]) >>> R3
|
||||
| v[c] := (v[c] + v[d]) mod 2**w
|
||||
| v[b] := (v[b] ^ v[c]) >>> R4
|
||||
|
|
||||
| RETURN v[0..15]
|
||||
|
|
||||
END FUNCTION.
|
||||
*/
|
||||
|
||||
fn mixing_g<E: Engine, CS: ConstraintSystem<E>, M>(
|
||||
mut cs: M,
|
||||
v: &mut [UInt32],
|
||||
a: usize,
|
||||
b: usize,
|
||||
c: usize,
|
||||
d: usize,
|
||||
x: &UInt32,
|
||||
y: &UInt32
|
||||
) -> Result<(), SynthesisError>
|
||||
where M: ConstraintSystem<E, Root=MultiEq<E, CS>>
|
||||
{
|
||||
v[a] = UInt32::addmany(cs.namespace(|| "mixing step 1"), &[v[a].clone(), v[b].clone(), x.clone()])?;
|
||||
v[d] = v[d].xor(cs.namespace(|| "mixing step 2"), &v[a])?.rotr(R1);
|
||||
v[c] = UInt32::addmany(cs.namespace(|| "mixing step 3"), &[v[c].clone(), v[d].clone()])?;
|
||||
v[b] = v[b].xor(cs.namespace(|| "mixing step 4"), &v[c])?.rotr(R2);
|
||||
v[a] = UInt32::addmany(cs.namespace(|| "mixing step 5"), &[v[a].clone(), v[b].clone(), y.clone()])?;
|
||||
v[d] = v[d].xor(cs.namespace(|| "mixing step 6"), &v[a])?.rotr(R3);
|
||||
v[c] = UInt32::addmany(cs.namespace(|| "mixing step 7"), &[v[c].clone(), v[d].clone()])?;
|
||||
v[b] = v[b].xor(cs.namespace(|| "mixing step 8"), &v[c])?.rotr(R4);
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
/*
|
||||
3.2. Compression Function F
|
||||
Compression function F takes as an argument the state vector "h",
|
||||
message block vector "m" (last block is padded with zeros to full
|
||||
block size, if required), 2w-bit offset counter "t", and final block
|
||||
indicator flag "f". Local vector v[0..15] is used in processing. F
|
||||
returns a new state vector. The number of rounds, "r", is 12 for
|
||||
BLAKE2b and 10 for BLAKE2s. Rounds are numbered from 0 to r - 1.
|
||||
FUNCTION F( h[0..7], m[0..15], t, f )
|
||||
|
|
||||
| // Initialize local work vector v[0..15]
|
||||
| v[0..7] := h[0..7] // First half from state.
|
||||
| v[8..15] := IV[0..7] // Second half from IV.
|
||||
|
|
||||
| v[12] := v[12] ^ (t mod 2**w) // Low word of the offset.
|
||||
| v[13] := v[13] ^ (t >> w) // High word.
|
||||
|
|
||||
| IF f = TRUE THEN // last block flag?
|
||||
| | v[14] := v[14] ^ 0xFF..FF // Invert all bits.
|
||||
| END IF.
|
||||
|
|
||||
| // Cryptographic mixing
|
||||
| FOR i = 0 TO r - 1 DO // Ten or twelve rounds.
|
||||
| |
|
||||
| | // Message word selection permutation for this round.
|
||||
| | s[0..15] := SIGMA[i mod 10][0..15]
|
||||
| |
|
||||
| | v := G( v, 0, 4, 8, 12, m[s[ 0]], m[s[ 1]] )
|
||||
| | v := G( v, 1, 5, 9, 13, m[s[ 2]], m[s[ 3]] )
|
||||
| | v := G( v, 2, 6, 10, 14, m[s[ 4]], m[s[ 5]] )
|
||||
| | v := G( v, 3, 7, 11, 15, m[s[ 6]], m[s[ 7]] )
|
||||
| |
|
||||
| | v := G( v, 0, 5, 10, 15, m[s[ 8]], m[s[ 9]] )
|
||||
| | v := G( v, 1, 6, 11, 12, m[s[10]], m[s[11]] )
|
||||
| | v := G( v, 2, 7, 8, 13, m[s[12]], m[s[13]] )
|
||||
| | v := G( v, 3, 4, 9, 14, m[s[14]], m[s[15]] )
|
||||
| |
|
||||
| END FOR
|
||||
|
|
||||
| FOR i = 0 TO 7 DO // XOR the two halves.
|
||||
| | h[i] := h[i] ^ v[i] ^ v[i + 8]
|
||||
| END FOR.
|
||||
|
|
||||
| RETURN h[0..7] // New state.
|
||||
|
|
||||
END FUNCTION.
|
||||
*/
|
||||
|
||||
|
||||
fn blake2s_compression<E: Engine, CS: ConstraintSystem<E>>(
|
||||
mut cs: CS,
|
||||
h: &mut [UInt32],
|
||||
m: &[UInt32],
|
||||
t: u64,
|
||||
f: bool
|
||||
) -> Result<(), SynthesisError>
|
||||
{
|
||||
assert_eq!(h.len(), 8);
|
||||
assert_eq!(m.len(), 16);
|
||||
|
||||
/*
|
||||
static const uint32_t blake2s_iv[8] =
|
||||
{
|
||||
0x6A09E667, 0xBB67AE85, 0x3C6EF372, 0xA54FF53A,
|
||||
0x510E527F, 0x9B05688C, 0x1F83D9AB, 0x5BE0CD19
|
||||
};
|
||||
*/
|
||||
|
||||
let mut v = Vec::with_capacity(16);
|
||||
v.extend_from_slice(h);
|
||||
v.push(UInt32::constant(0x6A09E667));
|
||||
v.push(UInt32::constant(0xBB67AE85));
|
||||
v.push(UInt32::constant(0x3C6EF372));
|
||||
v.push(UInt32::constant(0xA54FF53A));
|
||||
v.push(UInt32::constant(0x510E527F));
|
||||
v.push(UInt32::constant(0x9B05688C));
|
||||
v.push(UInt32::constant(0x1F83D9AB));
|
||||
v.push(UInt32::constant(0x5BE0CD19));
|
||||
|
||||
assert_eq!(v.len(), 16);
|
||||
|
||||
v[12] = v[12].xor(cs.namespace(|| "first xor"), &UInt32::constant(t as u32))?;
|
||||
v[13] = v[13].xor(cs.namespace(|| "second xor"), &UInt32::constant((t >> 32) as u32))?;
|
||||
|
||||
if f {
|
||||
v[14] = v[14].xor(cs.namespace(|| "third xor"), &UInt32::constant(u32::max_value()))?;
|
||||
}
|
||||
|
||||
{
|
||||
let mut cs = MultiEq::new(&mut cs);
|
||||
|
||||
for i in 0..10 {
|
||||
let mut cs = cs.namespace(|| format!("round {}", i));
|
||||
|
||||
let s = SIGMA[i % 10];
|
||||
|
||||
mixing_g(cs.namespace(|| "mixing invocation 1"), &mut v, 0, 4, 8, 12, &m[s[ 0]], &m[s[ 1]])?;
|
||||
mixing_g(cs.namespace(|| "mixing invocation 2"), &mut v, 1, 5, 9, 13, &m[s[ 2]], &m[s[ 3]])?;
|
||||
mixing_g(cs.namespace(|| "mixing invocation 3"), &mut v, 2, 6, 10, 14, &m[s[ 4]], &m[s[ 5]])?;
|
||||
mixing_g(cs.namespace(|| "mixing invocation 4"), &mut v, 3, 7, 11, 15, &m[s[ 6]], &m[s[ 7]])?;
|
||||
|
||||
mixing_g(cs.namespace(|| "mixing invocation 5"), &mut v, 0, 5, 10, 15, &m[s[ 8]], &m[s[ 9]])?;
|
||||
mixing_g(cs.namespace(|| "mixing invocation 6"), &mut v, 1, 6, 11, 12, &m[s[10]], &m[s[11]])?;
|
||||
mixing_g(cs.namespace(|| "mixing invocation 7"), &mut v, 2, 7, 8, 13, &m[s[12]], &m[s[13]])?;
|
||||
mixing_g(cs.namespace(|| "mixing invocation 8"), &mut v, 3, 4, 9, 14, &m[s[14]], &m[s[15]])?;
|
||||
}
|
||||
}
|
||||
|
||||
for i in 0..8 {
|
||||
let mut cs = cs.namespace(|| format!("h[{i}] ^ v[{i}] ^ v[{i} + 8]", i=i));
|
||||
|
||||
h[i] = h[i].xor(cs.namespace(|| "first xor"), &v[i])?;
|
||||
h[i] = h[i].xor(cs.namespace(|| "second xor"), &v[i + 8])?;
|
||||
}
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
/*
|
||||
FUNCTION BLAKE2( d[0..dd-1], ll, kk, nn )
|
||||
|
|
||||
| h[0..7] := IV[0..7] // Initialization Vector.
|
||||
|
|
||||
| // Parameter block p[0]
|
||||
| h[0] := h[0] ^ 0x01010000 ^ (kk << 8) ^ nn
|
||||
|
|
||||
| // Process padded key and data blocks
|
||||
| IF dd > 1 THEN
|
||||
| | FOR i = 0 TO dd - 2 DO
|
||||
| | | h := F( h, d[i], (i + 1) * bb, FALSE )
|
||||
| | END FOR.
|
||||
| END IF.
|
||||
|
|
||||
| // Final block.
|
||||
| IF kk = 0 THEN
|
||||
| | h := F( h, d[dd - 1], ll, TRUE )
|
||||
| ELSE
|
||||
| | h := F( h, d[dd - 1], ll + bb, TRUE )
|
||||
| END IF.
|
||||
|
|
||||
| RETURN first "nn" bytes from little-endian word array h[].
|
||||
|
|
||||
END FUNCTION.
|
||||
*/
|
||||
|
||||
pub fn blake2s<E: Engine, CS: ConstraintSystem<E>>(
|
||||
mut cs: CS,
|
||||
input: &[Boolean],
|
||||
personalization: &[u8]
|
||||
) -> Result<Vec<Boolean>, SynthesisError>
|
||||
{
|
||||
use byteorder::{ByteOrder, LittleEndian};
|
||||
|
||||
assert_eq!(personalization.len(), 8);
|
||||
assert!(input.len() % 8 == 0);
|
||||
|
||||
let mut h = Vec::with_capacity(8);
|
||||
h.push(UInt32::constant(0x6A09E667 ^ 0x01010000 ^ 32));
|
||||
h.push(UInt32::constant(0xBB67AE85));
|
||||
h.push(UInt32::constant(0x3C6EF372));
|
||||
h.push(UInt32::constant(0xA54FF53A));
|
||||
h.push(UInt32::constant(0x510E527F));
|
||||
h.push(UInt32::constant(0x9B05688C));
|
||||
|
||||
// Personalization is stored here
|
||||
h.push(UInt32::constant(0x1F83D9AB ^ LittleEndian::read_u32(&personalization[0..4])));
|
||||
h.push(UInt32::constant(0x5BE0CD19 ^ LittleEndian::read_u32(&personalization[4..8])));
|
||||
|
||||
let mut blocks: Vec<Vec<UInt32>> = vec![];
|
||||
|
||||
for block in input.chunks(512) {
|
||||
let mut this_block = Vec::with_capacity(16);
|
||||
for word in block.chunks(32) {
|
||||
let mut tmp = word.to_vec();
|
||||
while tmp.len() < 32 {
|
||||
tmp.push(Boolean::constant(false));
|
||||
}
|
||||
this_block.push(UInt32::from_bits(&tmp));
|
||||
}
|
||||
while this_block.len() < 16 {
|
||||
this_block.push(UInt32::constant(0));
|
||||
}
|
||||
blocks.push(this_block);
|
||||
}
|
||||
|
||||
if blocks.len() == 0 {
|
||||
blocks.push((0..16).map(|_| UInt32::constant(0)).collect());
|
||||
}
|
||||
|
||||
for (i, block) in blocks[0..blocks.len() - 1].iter().enumerate() {
|
||||
let cs = cs.namespace(|| format!("block {}", i));
|
||||
|
||||
blake2s_compression(cs, &mut h, block, ((i as u64) + 1) * 64, false)?;
|
||||
}
|
||||
|
||||
{
|
||||
let cs = cs.namespace(|| "final block");
|
||||
|
||||
blake2s_compression(cs, &mut h, &blocks[blocks.len() - 1], (input.len() / 8) as u64, true)?;
|
||||
}
|
||||
|
||||
Ok(h.iter().flat_map(|b| b.into_bits()).collect())
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod test {
|
||||
use rand::{XorShiftRng, SeedableRng, Rng};
|
||||
use pairing::bls12_381::{Bls12};
|
||||
use ::circuit::boolean::{Boolean, AllocatedBit};
|
||||
use ::circuit::test::TestConstraintSystem;
|
||||
use super::blake2s;
|
||||
use bellman::{ConstraintSystem};
|
||||
use blake2_rfc::blake2s::Blake2s;
|
||||
|
||||
#[test]
|
||||
fn test_blank_hash() {
|
||||
let mut cs = TestConstraintSystem::<Bls12>::new();
|
||||
let input_bits = vec![];
|
||||
let out = blake2s(&mut cs, &input_bits, b"12345678").unwrap();
|
||||
assert!(cs.is_satisfied());
|
||||
assert_eq!(cs.num_constraints(), 0);
|
||||
|
||||
// >>> import blake2s from hashlib
|
||||
// >>> h = blake2s(digest_size=32, person=b'12345678')
|
||||
// >>> h.hexdigest()
|
||||
let expected = hex!("c59f682376d137f3f255e671e207d1f2374ebe504e9314208a52d9f88d69e8c8");
|
||||
|
||||
let mut out = out.into_iter();
|
||||
for b in expected.into_iter() {
|
||||
for i in 0..8 {
|
||||
let c = out.next().unwrap().get_value().unwrap();
|
||||
|
||||
assert_eq!(c, (b >> i) & 1u8 == 1u8);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_blake2s_constraints() {
|
||||
let mut cs = TestConstraintSystem::<Bls12>::new();
|
||||
let input_bits: Vec<_> = (0..512).map(|i| AllocatedBit::alloc(cs.namespace(|| format!("input bit {}", i)), Some(true)).unwrap().into()).collect();
|
||||
blake2s(&mut cs, &input_bits, b"12345678").unwrap();
|
||||
assert!(cs.is_satisfied());
|
||||
assert_eq!(cs.num_constraints(), 21518);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_blake2s_precomp_constraints() {
|
||||
// Test that 512 fixed leading bits (constants)
|
||||
// doesn't result in more constraints.
|
||||
|
||||
let mut cs = TestConstraintSystem::<Bls12>::new();
|
||||
let mut rng = XorShiftRng::from_seed([0x5dbe6259, 0x8d313d76, 0x3237db17, 0xe5bc0654]);
|
||||
let input_bits: Vec<_> = (0..512)
|
||||
.map(|_| Boolean::constant(rng.gen()))
|
||||
.chain((0..512)
|
||||
.map(|i| AllocatedBit::alloc(cs.namespace(|| format!("input bit {}", i)), Some(true)).unwrap().into()))
|
||||
.collect();
|
||||
blake2s(&mut cs, &input_bits, b"12345678").unwrap();
|
||||
assert!(cs.is_satisfied());
|
||||
assert_eq!(cs.num_constraints(), 21518);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_blake2s_constant_constraints() {
|
||||
let mut cs = TestConstraintSystem::<Bls12>::new();
|
||||
let mut rng = XorShiftRng::from_seed([0x5dbe6259, 0x8d313d76, 0x3237db17, 0xe5bc0654]);
|
||||
let input_bits: Vec<_> = (0..512).map(|_| Boolean::constant(rng.gen())).collect();
|
||||
blake2s(&mut cs, &input_bits, b"12345678").unwrap();
|
||||
assert_eq!(cs.num_constraints(), 0);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_blake2s() {
|
||||
let mut rng = XorShiftRng::from_seed([0x5dbe6259, 0x8d313d76, 0x3237db17, 0xe5bc0654]);
|
||||
|
||||
for input_len in (0..32).chain((32..256).filter(|a| a % 8 == 0))
|
||||
{
|
||||
let mut h = Blake2s::with_params(32, &[], &[], b"12345678");
|
||||
|
||||
let data: Vec<u8> = (0..input_len).map(|_| rng.gen()).collect();
|
||||
|
||||
h.update(&data);
|
||||
|
||||
let hash_result = h.finalize();
|
||||
|
||||
let mut cs = TestConstraintSystem::<Bls12>::new();
|
||||
|
||||
let mut input_bits = vec![];
|
||||
|
||||
for (byte_i, input_byte) in data.into_iter().enumerate() {
|
||||
for bit_i in 0..8 {
|
||||
let cs = cs.namespace(|| format!("input bit {} {}", byte_i, bit_i));
|
||||
|
||||
input_bits.push(AllocatedBit::alloc(cs, Some((input_byte >> bit_i) & 1u8 == 1u8)).unwrap().into());
|
||||
}
|
||||
}
|
||||
|
||||
let r = blake2s(&mut cs, &input_bits, b"12345678").unwrap();
|
||||
|
||||
assert!(cs.is_satisfied());
|
||||
|
||||
let mut s = hash_result.as_ref().iter()
|
||||
.flat_map(|&byte| (0..8).map(move |i| (byte >> i) & 1u8 == 1u8));
|
||||
|
||||
for b in r {
|
||||
match b {
|
||||
Boolean::Is(b) => {
|
||||
assert!(s.next().unwrap() == b.get_value().unwrap());
|
||||
},
|
||||
Boolean::Not(b) => {
|
||||
assert!(s.next().unwrap() != b.get_value().unwrap());
|
||||
},
|
||||
Boolean::Constant(b) => {
|
||||
assert!(input_len == 0);
|
||||
assert!(s.next().unwrap() == b);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
1582
sapling-crypto/src/circuit/boolean.rs
Normal file
1582
sapling-crypto/src/circuit/boolean.rs
Normal file
File diff suppressed because it is too large
Load Diff
1213
sapling-crypto/src/circuit/ecc.rs
Normal file
1213
sapling-crypto/src/circuit/ecc.rs
Normal file
File diff suppressed because it is too large
Load Diff
307
sapling-crypto/src/circuit/lookup.rs
Normal file
307
sapling-crypto/src/circuit/lookup.rs
Normal file
@@ -0,0 +1,307 @@
|
||||
use pairing::{Engine, Field};
|
||||
use super::*;
|
||||
use super::num::{
|
||||
AllocatedNum,
|
||||
Num
|
||||
};
|
||||
use super::boolean::Boolean;
|
||||
use bellman::{
|
||||
ConstraintSystem
|
||||
};
|
||||
|
||||
// Synthesize the constants for each base pattern.
|
||||
fn synth<'a, E: Engine, I>(
|
||||
window_size: usize,
|
||||
constants: I,
|
||||
assignment: &mut [E::Fr]
|
||||
)
|
||||
where I: IntoIterator<Item=&'a E::Fr>
|
||||
{
|
||||
assert_eq!(assignment.len(), 1 << window_size);
|
||||
|
||||
for (i, constant) in constants.into_iter().enumerate() {
|
||||
let mut cur = assignment[i];
|
||||
cur.negate();
|
||||
cur.add_assign(constant);
|
||||
assignment[i] = cur;
|
||||
for (j, eval) in assignment.iter_mut().enumerate().skip(i + 1) {
|
||||
if j & i == i {
|
||||
eval.add_assign(&cur);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// Performs a 3-bit window table lookup. `bits` is in
|
||||
/// little-endian order.
|
||||
pub fn lookup3_xy<E: Engine, CS>(
|
||||
mut cs: CS,
|
||||
bits: &[Boolean],
|
||||
coords: &[(E::Fr, E::Fr)]
|
||||
) -> Result<(AllocatedNum<E>, AllocatedNum<E>), SynthesisError>
|
||||
where CS: ConstraintSystem<E>
|
||||
{
|
||||
assert_eq!(bits.len(), 3);
|
||||
assert_eq!(coords.len(), 8);
|
||||
|
||||
// Calculate the index into `coords`
|
||||
let i =
|
||||
match (bits[0].get_value(), bits[1].get_value(), bits[2].get_value()) {
|
||||
(Some(a_value), Some(b_value), Some(c_value)) => {
|
||||
let mut tmp = 0;
|
||||
if a_value {
|
||||
tmp += 1;
|
||||
}
|
||||
if b_value {
|
||||
tmp += 2;
|
||||
}
|
||||
if c_value {
|
||||
tmp += 4;
|
||||
}
|
||||
Some(tmp)
|
||||
},
|
||||
_ => None
|
||||
};
|
||||
|
||||
// Allocate the x-coordinate resulting from the lookup
|
||||
let res_x = AllocatedNum::alloc(
|
||||
cs.namespace(|| "x"),
|
||||
|| {
|
||||
Ok(coords[*i.get()?].0)
|
||||
}
|
||||
)?;
|
||||
|
||||
// Allocate the y-coordinate resulting from the lookup
|
||||
let res_y = AllocatedNum::alloc(
|
||||
cs.namespace(|| "y"),
|
||||
|| {
|
||||
Ok(coords[*i.get()?].1)
|
||||
}
|
||||
)?;
|
||||
|
||||
// Compute the coefficients for the lookup constraints
|
||||
let mut x_coeffs = [E::Fr::zero(); 8];
|
||||
let mut y_coeffs = [E::Fr::zero(); 8];
|
||||
synth::<E, _>(3, coords.iter().map(|c| &c.0), &mut x_coeffs);
|
||||
synth::<E, _>(3, coords.iter().map(|c| &c.1), &mut y_coeffs);
|
||||
|
||||
let precomp = Boolean::and(cs.namespace(|| "precomp"), &bits[1], &bits[2])?;
|
||||
|
||||
let one = CS::one();
|
||||
|
||||
cs.enforce(
|
||||
|| "x-coordinate lookup",
|
||||
|lc| lc + (x_coeffs[0b001], one)
|
||||
+ &bits[1].lc::<E>(one, x_coeffs[0b011])
|
||||
+ &bits[2].lc::<E>(one, x_coeffs[0b101])
|
||||
+ &precomp.lc::<E>(one, x_coeffs[0b111]),
|
||||
|lc| lc + &bits[0].lc::<E>(one, E::Fr::one()),
|
||||
|lc| lc + res_x.get_variable()
|
||||
- (x_coeffs[0b000], one)
|
||||
- &bits[1].lc::<E>(one, x_coeffs[0b010])
|
||||
- &bits[2].lc::<E>(one, x_coeffs[0b100])
|
||||
- &precomp.lc::<E>(one, x_coeffs[0b110]),
|
||||
);
|
||||
|
||||
cs.enforce(
|
||||
|| "y-coordinate lookup",
|
||||
|lc| lc + (y_coeffs[0b001], one)
|
||||
+ &bits[1].lc::<E>(one, y_coeffs[0b011])
|
||||
+ &bits[2].lc::<E>(one, y_coeffs[0b101])
|
||||
+ &precomp.lc::<E>(one, y_coeffs[0b111]),
|
||||
|lc| lc + &bits[0].lc::<E>(one, E::Fr::one()),
|
||||
|lc| lc + res_y.get_variable()
|
||||
- (y_coeffs[0b000], one)
|
||||
- &bits[1].lc::<E>(one, y_coeffs[0b010])
|
||||
- &bits[2].lc::<E>(one, y_coeffs[0b100])
|
||||
- &precomp.lc::<E>(one, y_coeffs[0b110]),
|
||||
);
|
||||
|
||||
Ok((res_x, res_y))
|
||||
}
|
||||
|
||||
/// Performs a 3-bit window table lookup, where
|
||||
/// one of the bits is a sign bit.
|
||||
pub fn lookup3_xy_with_conditional_negation<E: Engine, CS>(
|
||||
mut cs: CS,
|
||||
bits: &[Boolean],
|
||||
coords: &[(E::Fr, E::Fr)]
|
||||
) -> Result<(Num<E>, Num<E>), SynthesisError>
|
||||
where CS: ConstraintSystem<E>
|
||||
{
|
||||
assert_eq!(bits.len(), 3);
|
||||
assert_eq!(coords.len(), 4);
|
||||
|
||||
// Calculate the index into `coords`
|
||||
let i =
|
||||
match (bits[0].get_value(), bits[1].get_value()) {
|
||||
(Some(a_value), Some(b_value)) => {
|
||||
let mut tmp = 0;
|
||||
if a_value {
|
||||
tmp += 1;
|
||||
}
|
||||
if b_value {
|
||||
tmp += 2;
|
||||
}
|
||||
Some(tmp)
|
||||
},
|
||||
_ => None
|
||||
};
|
||||
|
||||
// Allocate the y-coordinate resulting from the lookup
|
||||
// and conditional negation
|
||||
let y = AllocatedNum::alloc(
|
||||
cs.namespace(|| "y"),
|
||||
|| {
|
||||
let mut tmp = coords[*i.get()?].1;
|
||||
if *bits[2].get_value().get()? {
|
||||
tmp.negate();
|
||||
}
|
||||
Ok(tmp)
|
||||
}
|
||||
)?;
|
||||
|
||||
let one = CS::one();
|
||||
|
||||
// Compute the coefficients for the lookup constraints
|
||||
let mut x_coeffs = [E::Fr::zero(); 4];
|
||||
let mut y_coeffs = [E::Fr::zero(); 4];
|
||||
synth::<E, _>(2, coords.iter().map(|c| &c.0), &mut x_coeffs);
|
||||
synth::<E, _>(2, coords.iter().map(|c| &c.1), &mut y_coeffs);
|
||||
|
||||
let precomp = Boolean::and(cs.namespace(|| "precomp"), &bits[0], &bits[1])?;
|
||||
|
||||
let x = Num::zero()
|
||||
.add_bool_with_coeff(one, &Boolean::constant(true), x_coeffs[0b00])
|
||||
.add_bool_with_coeff(one, &bits[0], x_coeffs[0b01])
|
||||
.add_bool_with_coeff(one, &bits[1], x_coeffs[0b10])
|
||||
.add_bool_with_coeff(one, &precomp, x_coeffs[0b11]);
|
||||
|
||||
let y_lc = precomp.lc::<E>(one, y_coeffs[0b11]) +
|
||||
&bits[1].lc::<E>(one, y_coeffs[0b10]) +
|
||||
&bits[0].lc::<E>(one, y_coeffs[0b01]) +
|
||||
(y_coeffs[0b00], one);
|
||||
|
||||
cs.enforce(
|
||||
|| "y-coordinate lookup",
|
||||
|lc| lc + &y_lc + &y_lc,
|
||||
|lc| lc + &bits[2].lc::<E>(one, E::Fr::one()),
|
||||
|lc| lc + &y_lc - y.get_variable()
|
||||
);
|
||||
|
||||
Ok((x, y.into()))
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod test {
|
||||
use rand::{SeedableRng, Rand, Rng, XorShiftRng};
|
||||
use super::*;
|
||||
use ::circuit::test::*;
|
||||
use ::circuit::boolean::{Boolean, AllocatedBit};
|
||||
use pairing::bls12_381::{Bls12, Fr};
|
||||
|
||||
#[test]
|
||||
fn test_lookup3_xy() {
|
||||
let mut rng = XorShiftRng::from_seed([0x3dbe6259, 0x8d313d76, 0x3237db17, 0xe5bc0656]);
|
||||
|
||||
for _ in 0..100 {
|
||||
let mut cs = TestConstraintSystem::<Bls12>::new();
|
||||
|
||||
let a_val = rng.gen();
|
||||
let a = Boolean::from(
|
||||
AllocatedBit::alloc(cs.namespace(|| "a"), Some(a_val)).unwrap()
|
||||
);
|
||||
|
||||
let b_val = rng.gen();
|
||||
let b = Boolean::from(
|
||||
AllocatedBit::alloc(cs.namespace(|| "b"), Some(b_val)).unwrap()
|
||||
);
|
||||
|
||||
let c_val = rng.gen();
|
||||
let c = Boolean::from(
|
||||
AllocatedBit::alloc(cs.namespace(|| "c"), Some(c_val)).unwrap()
|
||||
);
|
||||
|
||||
let bits = vec![a, b, c];
|
||||
|
||||
let points: Vec<(Fr, Fr)> = (0..8).map(|_| (rng.gen(), rng.gen())).collect();
|
||||
|
||||
let res = lookup3_xy(&mut cs, &bits, &points).unwrap();
|
||||
|
||||
assert!(cs.is_satisfied());
|
||||
|
||||
let mut index = 0;
|
||||
if a_val { index += 1 }
|
||||
if b_val { index += 2 }
|
||||
if c_val { index += 4 }
|
||||
|
||||
assert_eq!(res.0.get_value().unwrap(), points[index].0);
|
||||
assert_eq!(res.1.get_value().unwrap(), points[index].1);
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_lookup3_xy_with_conditional_negation() {
|
||||
let mut rng = XorShiftRng::from_seed([0x3dbe6259, 0x8d313d76, 0x3237db17, 0xe5bc0654]);
|
||||
|
||||
for _ in 0..100 {
|
||||
let mut cs = TestConstraintSystem::<Bls12>::new();
|
||||
|
||||
let a_val = rng.gen();
|
||||
let a = Boolean::from(
|
||||
AllocatedBit::alloc(cs.namespace(|| "a"), Some(a_val)).unwrap()
|
||||
);
|
||||
|
||||
let b_val = rng.gen();
|
||||
let b = Boolean::from(
|
||||
AllocatedBit::alloc(cs.namespace(|| "b"), Some(b_val)).unwrap()
|
||||
);
|
||||
|
||||
let c_val = rng.gen();
|
||||
let c = Boolean::from(
|
||||
AllocatedBit::alloc(cs.namespace(|| "c"), Some(c_val)).unwrap()
|
||||
);
|
||||
|
||||
let bits = vec![a, b, c];
|
||||
|
||||
let points: Vec<(Fr, Fr)> = (0..4).map(|_| (rng.gen(), rng.gen())).collect();
|
||||
|
||||
let res = lookup3_xy_with_conditional_negation(&mut cs, &bits, &points).unwrap();
|
||||
|
||||
assert!(cs.is_satisfied());
|
||||
|
||||
let mut index = 0;
|
||||
if a_val { index += 1 }
|
||||
if b_val { index += 2 }
|
||||
|
||||
assert_eq!(res.0.get_value().unwrap(), points[index].0);
|
||||
let mut tmp = points[index].1;
|
||||
if c_val { tmp.negate() }
|
||||
assert_eq!(res.1.get_value().unwrap(), tmp);
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_synth() {
|
||||
let mut rng = XorShiftRng::from_seed([0x3dbe6259, 0x8d313d76, 0x3237db17, 0xe5bc0654]);
|
||||
|
||||
let window_size = 4;
|
||||
|
||||
let mut assignment = vec![Fr::zero(); 1 << window_size];
|
||||
let constants: Vec<_> = (0..(1 << window_size)).map(|_| Fr::rand(&mut rng)).collect();
|
||||
|
||||
synth::<Bls12, _>(window_size, &constants, &mut assignment);
|
||||
|
||||
for b in 0..(1 << window_size) {
|
||||
let mut acc = Fr::zero();
|
||||
|
||||
for j in 0..(1 << window_size) {
|
||||
if j & b == j {
|
||||
acc.add_assign(&assignment[j]);
|
||||
}
|
||||
}
|
||||
|
||||
assert_eq!(acc, constants[b]);
|
||||
}
|
||||
}
|
||||
}
|
39
sapling-crypto/src/circuit/mod.rs
Normal file
39
sapling-crypto/src/circuit/mod.rs
Normal file
@@ -0,0 +1,39 @@
|
||||
#[cfg(test)]
|
||||
pub mod test;
|
||||
|
||||
pub mod boolean;
|
||||
pub mod multieq;
|
||||
pub mod uint32;
|
||||
pub mod blake2s;
|
||||
pub mod num;
|
||||
pub mod lookup;
|
||||
pub mod ecc;
|
||||
pub mod pedersen_hash;
|
||||
pub mod multipack;
|
||||
pub mod sha256;
|
||||
|
||||
pub mod sapling;
|
||||
pub mod sprout;
|
||||
|
||||
use bellman::{
|
||||
SynthesisError
|
||||
};
|
||||
|
||||
// TODO: This should probably be removed and we
|
||||
// should use existing helper methods on `Option`
|
||||
// for mapping with an error.
|
||||
/// This basically is just an extension to `Option`
|
||||
/// which allows for a convenient mapping to an
|
||||
/// error on `None`.
|
||||
trait Assignment<T> {
|
||||
fn get(&self) -> Result<&T, SynthesisError>;
|
||||
}
|
||||
|
||||
impl<T> Assignment<T> for Option<T> {
|
||||
fn get(&self) -> Result<&T, SynthesisError> {
|
||||
match *self {
|
||||
Some(ref v) => Ok(v),
|
||||
None => Err(SynthesisError::AssignmentMissing)
|
||||
}
|
||||
}
|
||||
}
|
137
sapling-crypto/src/circuit/multieq.rs
Normal file
137
sapling-crypto/src/circuit/multieq.rs
Normal file
@@ -0,0 +1,137 @@
|
||||
use pairing::{
|
||||
Engine,
|
||||
Field,
|
||||
PrimeField
|
||||
};
|
||||
|
||||
use bellman::{
|
||||
SynthesisError,
|
||||
ConstraintSystem,
|
||||
LinearCombination,
|
||||
Variable
|
||||
};
|
||||
|
||||
pub struct MultiEq<E: Engine, CS: ConstraintSystem<E>>{
|
||||
cs: CS,
|
||||
ops: usize,
|
||||
bits_used: usize,
|
||||
lhs: LinearCombination<E>,
|
||||
rhs: LinearCombination<E>,
|
||||
}
|
||||
|
||||
impl<E: Engine, CS: ConstraintSystem<E>> MultiEq<E, CS> {
|
||||
pub fn new(cs: CS) -> Self {
|
||||
MultiEq {
|
||||
cs: cs,
|
||||
ops: 0,
|
||||
bits_used: 0,
|
||||
lhs: LinearCombination::zero(),
|
||||
rhs: LinearCombination::zero()
|
||||
}
|
||||
}
|
||||
|
||||
fn accumulate(&mut self)
|
||||
{
|
||||
let ops = self.ops;
|
||||
let lhs = self.lhs.clone();
|
||||
let rhs = self.rhs.clone();
|
||||
self.cs.enforce(
|
||||
|| format!("multieq {}", ops),
|
||||
|_| lhs,
|
||||
|lc| lc + CS::one(),
|
||||
|_| rhs
|
||||
);
|
||||
self.lhs = LinearCombination::zero();
|
||||
self.rhs = LinearCombination::zero();
|
||||
self.bits_used = 0;
|
||||
self.ops += 1;
|
||||
}
|
||||
|
||||
pub fn enforce_equal(
|
||||
&mut self,
|
||||
num_bits: usize,
|
||||
lhs: &LinearCombination<E>,
|
||||
rhs: &LinearCombination<E>
|
||||
)
|
||||
{
|
||||
// Check if we will exceed the capacity
|
||||
if (E::Fr::CAPACITY as usize) <= (self.bits_used + num_bits) {
|
||||
self.accumulate();
|
||||
}
|
||||
|
||||
assert!((E::Fr::CAPACITY as usize) > (self.bits_used + num_bits));
|
||||
|
||||
let coeff = E::Fr::from_str("2").unwrap().pow(&[self.bits_used as u64]);
|
||||
self.lhs = self.lhs.clone() + (coeff, lhs);
|
||||
self.rhs = self.rhs.clone() + (coeff, rhs);
|
||||
self.bits_used += num_bits;
|
||||
}
|
||||
}
|
||||
|
||||
impl<E: Engine, CS: ConstraintSystem<E>> Drop for MultiEq<E, CS> {
|
||||
fn drop(&mut self) {
|
||||
if self.bits_used > 0 {
|
||||
self.accumulate();
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl<E: Engine, CS: ConstraintSystem<E>> ConstraintSystem<E> for MultiEq<E, CS>
|
||||
{
|
||||
type Root = Self;
|
||||
|
||||
fn one() -> Variable {
|
||||
CS::one()
|
||||
}
|
||||
|
||||
fn alloc<F, A, AR>(
|
||||
&mut self,
|
||||
annotation: A,
|
||||
f: F
|
||||
) -> Result<Variable, SynthesisError>
|
||||
where F: FnOnce() -> Result<E::Fr, SynthesisError>, A: FnOnce() -> AR, AR: Into<String>
|
||||
{
|
||||
self.cs.alloc(annotation, f)
|
||||
}
|
||||
|
||||
fn alloc_input<F, A, AR>(
|
||||
&mut self,
|
||||
annotation: A,
|
||||
f: F
|
||||
) -> Result<Variable, SynthesisError>
|
||||
where F: FnOnce() -> Result<E::Fr, SynthesisError>, A: FnOnce() -> AR, AR: Into<String>
|
||||
{
|
||||
self.cs.alloc_input(annotation, f)
|
||||
}
|
||||
|
||||
fn enforce<A, AR, LA, LB, LC>(
|
||||
&mut self,
|
||||
annotation: A,
|
||||
a: LA,
|
||||
b: LB,
|
||||
c: LC
|
||||
)
|
||||
where A: FnOnce() -> AR, AR: Into<String>,
|
||||
LA: FnOnce(LinearCombination<E>) -> LinearCombination<E>,
|
||||
LB: FnOnce(LinearCombination<E>) -> LinearCombination<E>,
|
||||
LC: FnOnce(LinearCombination<E>) -> LinearCombination<E>
|
||||
{
|
||||
self.cs.enforce(annotation, a, b, c)
|
||||
}
|
||||
|
||||
fn push_namespace<NR, N>(&mut self, name_fn: N)
|
||||
where NR: Into<String>, N: FnOnce() -> NR
|
||||
{
|
||||
self.cs.get_root().push_namespace(name_fn)
|
||||
}
|
||||
|
||||
fn pop_namespace(&mut self)
|
||||
{
|
||||
self.cs.get_root().pop_namespace()
|
||||
}
|
||||
|
||||
fn get_root(&mut self) -> &mut Self::Root
|
||||
{
|
||||
self
|
||||
}
|
||||
}
|
113
sapling-crypto/src/circuit/multipack.rs
Normal file
113
sapling-crypto/src/circuit/multipack.rs
Normal file
@@ -0,0 +1,113 @@
|
||||
use pairing::{Engine, Field, PrimeField};
|
||||
use bellman::{ConstraintSystem, SynthesisError};
|
||||
use super::boolean::{Boolean};
|
||||
use super::num::Num;
|
||||
use super::Assignment;
|
||||
|
||||
/// Takes a sequence of booleans and exposes them as compact
|
||||
/// public inputs
|
||||
pub fn pack_into_inputs<E, CS>(
|
||||
mut cs: CS,
|
||||
bits: &[Boolean]
|
||||
) -> Result<(), SynthesisError>
|
||||
where E: Engine, CS: ConstraintSystem<E>
|
||||
{
|
||||
for (i, bits) in bits.chunks(E::Fr::CAPACITY as usize).enumerate()
|
||||
{
|
||||
let mut num = Num::<E>::zero();
|
||||
let mut coeff = E::Fr::one();
|
||||
for bit in bits {
|
||||
num = num.add_bool_with_coeff(CS::one(), bit, coeff);
|
||||
|
||||
coeff.double();
|
||||
}
|
||||
|
||||
let input = cs.alloc_input(|| format!("input {}", i), || {
|
||||
Ok(*num.get_value().get()?)
|
||||
})?;
|
||||
|
||||
// num * 1 = input
|
||||
cs.enforce(
|
||||
|| format!("packing constraint {}", i),
|
||||
|_| num.lc(E::Fr::one()),
|
||||
|lc| lc + CS::one(),
|
||||
|lc| lc + input
|
||||
);
|
||||
}
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
pub fn bytes_to_bits(bytes: &[u8]) -> Vec<bool>
|
||||
{
|
||||
bytes.iter()
|
||||
.flat_map(|&v| (0..8).rev().map(move |i| (v >> i) & 1 == 1))
|
||||
.collect()
|
||||
}
|
||||
|
||||
pub fn bytes_to_bits_le(bytes: &[u8]) -> Vec<bool>
|
||||
{
|
||||
bytes.iter()
|
||||
.flat_map(|&v| (0..8).map(move |i| (v >> i) & 1 == 1))
|
||||
.collect()
|
||||
}
|
||||
|
||||
pub fn compute_multipacking<E: Engine>(
|
||||
bits: &[bool]
|
||||
) -> Vec<E::Fr>
|
||||
{
|
||||
let mut result = vec![];
|
||||
|
||||
for bits in bits.chunks(E::Fr::CAPACITY as usize)
|
||||
{
|
||||
let mut cur = E::Fr::zero();
|
||||
let mut coeff = E::Fr::one();
|
||||
|
||||
for bit in bits {
|
||||
if *bit {
|
||||
cur.add_assign(&coeff);
|
||||
}
|
||||
|
||||
coeff.double();
|
||||
}
|
||||
|
||||
result.push(cur);
|
||||
}
|
||||
|
||||
result
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_multipacking() {
|
||||
use rand::{SeedableRng, Rng, XorShiftRng};
|
||||
use bellman::{ConstraintSystem};
|
||||
use pairing::bls12_381::{Bls12};
|
||||
use ::circuit::test::*;
|
||||
use super::boolean::{AllocatedBit, Boolean};
|
||||
|
||||
let mut rng = XorShiftRng::from_seed([0x3dbe6259, 0x8d313d76, 0x3237db17, 0xe5bc0654]);
|
||||
|
||||
for num_bits in 0..1500 {
|
||||
let mut cs = TestConstraintSystem::<Bls12>::new();
|
||||
|
||||
let bits: Vec<bool> = (0..num_bits).map(|_| rng.gen()).collect();
|
||||
|
||||
let circuit_bits = bits.iter().enumerate()
|
||||
.map(|(i, &b)| {
|
||||
Boolean::from(
|
||||
AllocatedBit::alloc(
|
||||
cs.namespace(|| format!("bit {}", i)),
|
||||
Some(b)
|
||||
).unwrap()
|
||||
)
|
||||
})
|
||||
.collect::<Vec<_>>();
|
||||
|
||||
let expected_inputs = compute_multipacking::<Bls12>(&bits);
|
||||
|
||||
pack_into_inputs(cs.namespace(|| "pack"), &circuit_bits).unwrap();
|
||||
|
||||
assert!(cs.is_satisfied());
|
||||
assert!(cs.verify(&expected_inputs));
|
||||
}
|
||||
}
|
622
sapling-crypto/src/circuit/num.rs
Normal file
622
sapling-crypto/src/circuit/num.rs
Normal file
@@ -0,0 +1,622 @@
|
||||
use pairing::{
|
||||
Engine,
|
||||
Field,
|
||||
PrimeField,
|
||||
PrimeFieldRepr,
|
||||
BitIterator
|
||||
};
|
||||
|
||||
use bellman::{
|
||||
SynthesisError,
|
||||
ConstraintSystem,
|
||||
LinearCombination,
|
||||
Variable
|
||||
};
|
||||
|
||||
use super::{
|
||||
Assignment
|
||||
};
|
||||
|
||||
use super::boolean::{
|
||||
self,
|
||||
Boolean,
|
||||
AllocatedBit
|
||||
};
|
||||
|
||||
pub struct AllocatedNum<E: Engine> {
|
||||
value: Option<E::Fr>,
|
||||
variable: Variable
|
||||
}
|
||||
|
||||
impl<E: Engine> Clone for AllocatedNum<E> {
|
||||
fn clone(&self) -> Self {
|
||||
AllocatedNum {
|
||||
value: self.value,
|
||||
variable: self.variable
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl<E: Engine> AllocatedNum<E> {
|
||||
pub fn alloc<CS, F>(
|
||||
mut cs: CS,
|
||||
value: F,
|
||||
) -> Result<Self, SynthesisError>
|
||||
where CS: ConstraintSystem<E>,
|
||||
F: FnOnce() -> Result<E::Fr, SynthesisError>
|
||||
{
|
||||
let mut new_value = None;
|
||||
let var = cs.alloc(|| "num", || {
|
||||
let tmp = value()?;
|
||||
|
||||
new_value = Some(tmp);
|
||||
|
||||
Ok(tmp)
|
||||
})?;
|
||||
|
||||
Ok(AllocatedNum {
|
||||
value: new_value,
|
||||
variable: var
|
||||
})
|
||||
}
|
||||
|
||||
pub fn inputize<CS>(
|
||||
&self,
|
||||
mut cs: CS
|
||||
) -> Result<(), SynthesisError>
|
||||
where CS: ConstraintSystem<E>
|
||||
{
|
||||
let input = cs.alloc_input(
|
||||
|| "input variable",
|
||||
|| {
|
||||
Ok(*self.value.get()?)
|
||||
}
|
||||
)?;
|
||||
|
||||
cs.enforce(
|
||||
|| "enforce input is correct",
|
||||
|lc| lc + input,
|
||||
|lc| lc + CS::one(),
|
||||
|lc| lc + self.variable
|
||||
);
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
/// Deconstructs this allocated number into its
|
||||
/// boolean representation in little-endian bit
|
||||
/// order, requiring that the representation
|
||||
/// strictly exists "in the field" (i.e., a
|
||||
/// congruency is not allowed.)
|
||||
pub fn into_bits_le_strict<CS>(
|
||||
&self,
|
||||
mut cs: CS
|
||||
) -> Result<Vec<Boolean>, SynthesisError>
|
||||
where CS: ConstraintSystem<E>
|
||||
{
|
||||
pub fn kary_and<E, CS>(
|
||||
mut cs: CS,
|
||||
v: &[AllocatedBit]
|
||||
) -> Result<AllocatedBit, SynthesisError>
|
||||
where E: Engine,
|
||||
CS: ConstraintSystem<E>
|
||||
{
|
||||
assert!(v.len() > 0);
|
||||
|
||||
// Let's keep this simple for now and just AND them all
|
||||
// manually
|
||||
let mut cur = None;
|
||||
|
||||
for (i, v) in v.iter().enumerate() {
|
||||
if cur.is_none() {
|
||||
cur = Some(v.clone());
|
||||
} else {
|
||||
cur = Some(AllocatedBit::and(
|
||||
cs.namespace(|| format!("and {}", i)),
|
||||
cur.as_ref().unwrap(),
|
||||
v
|
||||
)?);
|
||||
}
|
||||
}
|
||||
|
||||
Ok(cur.expect("v.len() > 0"))
|
||||
}
|
||||
|
||||
// We want to ensure that the bit representation of a is
|
||||
// less than or equal to r - 1.
|
||||
let mut a = self.value.map(|e| BitIterator::new(e.into_repr()));
|
||||
let mut b = E::Fr::char();
|
||||
b.sub_noborrow(&1.into());
|
||||
|
||||
let mut result = vec![];
|
||||
|
||||
// Runs of ones in r
|
||||
let mut last_run = None;
|
||||
let mut current_run = vec![];
|
||||
|
||||
let mut found_one = false;
|
||||
let mut i = 0;
|
||||
for b in BitIterator::new(b) {
|
||||
let a_bit = a.as_mut().map(|e| e.next().unwrap());
|
||||
|
||||
// Skip over unset bits at the beginning
|
||||
found_one |= b;
|
||||
if !found_one {
|
||||
// a_bit should also be false
|
||||
a_bit.map(|e| assert!(!e));
|
||||
continue;
|
||||
}
|
||||
|
||||
if b {
|
||||
// This is part of a run of ones. Let's just
|
||||
// allocate the boolean with the expected value.
|
||||
let a_bit = AllocatedBit::alloc(
|
||||
cs.namespace(|| format!("bit {}", i)),
|
||||
a_bit
|
||||
)?;
|
||||
// ... and add it to the current run of ones.
|
||||
current_run.push(a_bit.clone());
|
||||
result.push(a_bit);
|
||||
} else {
|
||||
if current_run.len() > 0 {
|
||||
// This is the start of a run of zeros, but we need
|
||||
// to k-ary AND against `last_run` first.
|
||||
|
||||
if last_run.is_some() {
|
||||
current_run.push(last_run.clone().unwrap());
|
||||
}
|
||||
last_run = Some(kary_and(
|
||||
cs.namespace(|| format!("run ending at {}", i)),
|
||||
¤t_run
|
||||
)?);
|
||||
current_run.truncate(0);
|
||||
}
|
||||
|
||||
// If `last_run` is true, `a` must be false, or it would
|
||||
// not be in the field.
|
||||
//
|
||||
// If `last_run` is false, `a` can be true or false.
|
||||
|
||||
let a_bit = AllocatedBit::alloc_conditionally(
|
||||
cs.namespace(|| format!("bit {}", i)),
|
||||
a_bit,
|
||||
&last_run.as_ref().expect("char always starts with a one")
|
||||
)?;
|
||||
result.push(a_bit);
|
||||
}
|
||||
|
||||
i += 1;
|
||||
}
|
||||
|
||||
// char is prime, so we'll always end on
|
||||
// a run of zeros.
|
||||
assert_eq!(current_run.len(), 0);
|
||||
|
||||
// Now, we have `result` in big-endian order.
|
||||
// However, now we have to unpack self!
|
||||
|
||||
let mut lc = LinearCombination::zero();
|
||||
let mut coeff = E::Fr::one();
|
||||
|
||||
for bit in result.iter().rev() {
|
||||
lc = lc + (coeff, bit.get_variable());
|
||||
|
||||
coeff.double();
|
||||
}
|
||||
|
||||
lc = lc - self.variable;
|
||||
|
||||
cs.enforce(
|
||||
|| "unpacking constraint",
|
||||
|lc| lc,
|
||||
|lc| lc,
|
||||
|_| lc
|
||||
);
|
||||
|
||||
// Convert into booleans, and reverse for little-endian bit order
|
||||
Ok(result.into_iter().map(|b| Boolean::from(b)).rev().collect())
|
||||
}
|
||||
|
||||
/// Convert the allocated number into its little-endian representation.
|
||||
/// Note that this does not strongly enforce that the commitment is
|
||||
/// "in the field."
|
||||
pub fn into_bits_le<CS>(
|
||||
&self,
|
||||
mut cs: CS
|
||||
) -> Result<Vec<Boolean>, SynthesisError>
|
||||
where CS: ConstraintSystem<E>
|
||||
{
|
||||
let bits = boolean::field_into_allocated_bits_le(
|
||||
&mut cs,
|
||||
self.value
|
||||
)?;
|
||||
|
||||
let mut lc = LinearCombination::zero();
|
||||
let mut coeff = E::Fr::one();
|
||||
|
||||
for bit in bits.iter() {
|
||||
lc = lc + (coeff, bit.get_variable());
|
||||
|
||||
coeff.double();
|
||||
}
|
||||
|
||||
lc = lc - self.variable;
|
||||
|
||||
cs.enforce(
|
||||
|| "unpacking constraint",
|
||||
|lc| lc,
|
||||
|lc| lc,
|
||||
|_| lc
|
||||
);
|
||||
|
||||
Ok(bits.into_iter().map(|b| Boolean::from(b)).collect())
|
||||
}
|
||||
|
||||
pub fn mul<CS>(
|
||||
&self,
|
||||
mut cs: CS,
|
||||
other: &Self
|
||||
) -> Result<Self, SynthesisError>
|
||||
where CS: ConstraintSystem<E>
|
||||
{
|
||||
let mut value = None;
|
||||
|
||||
let var = cs.alloc(|| "product num", || {
|
||||
let mut tmp = *self.value.get()?;
|
||||
tmp.mul_assign(other.value.get()?);
|
||||
|
||||
value = Some(tmp);
|
||||
|
||||
Ok(tmp)
|
||||
})?;
|
||||
|
||||
// Constrain: a * b = ab
|
||||
cs.enforce(
|
||||
|| "multiplication constraint",
|
||||
|lc| lc + self.variable,
|
||||
|lc| lc + other.variable,
|
||||
|lc| lc + var
|
||||
);
|
||||
|
||||
Ok(AllocatedNum {
|
||||
value: value,
|
||||
variable: var
|
||||
})
|
||||
}
|
||||
|
||||
pub fn square<CS>(
|
||||
&self,
|
||||
mut cs: CS
|
||||
) -> Result<Self, SynthesisError>
|
||||
where CS: ConstraintSystem<E>
|
||||
{
|
||||
let mut value = None;
|
||||
|
||||
let var = cs.alloc(|| "squared num", || {
|
||||
let mut tmp = *self.value.get()?;
|
||||
tmp.square();
|
||||
|
||||
value = Some(tmp);
|
||||
|
||||
Ok(tmp)
|
||||
})?;
|
||||
|
||||
// Constrain: a * a = aa
|
||||
cs.enforce(
|
||||
|| "squaring constraint",
|
||||
|lc| lc + self.variable,
|
||||
|lc| lc + self.variable,
|
||||
|lc| lc + var
|
||||
);
|
||||
|
||||
Ok(AllocatedNum {
|
||||
value: value,
|
||||
variable: var
|
||||
})
|
||||
}
|
||||
|
||||
pub fn assert_nonzero<CS>(
|
||||
&self,
|
||||
mut cs: CS
|
||||
) -> Result<(), SynthesisError>
|
||||
where CS: ConstraintSystem<E>
|
||||
{
|
||||
let inv = cs.alloc(|| "ephemeral inverse", || {
|
||||
let tmp = *self.value.get()?;
|
||||
|
||||
if tmp.is_zero() {
|
||||
Err(SynthesisError::DivisionByZero)
|
||||
} else {
|
||||
Ok(tmp.inverse().unwrap())
|
||||
}
|
||||
})?;
|
||||
|
||||
// Constrain a * inv = 1, which is only valid
|
||||
// iff a has a multiplicative inverse, untrue
|
||||
// for zero.
|
||||
cs.enforce(
|
||||
|| "nonzero assertion constraint",
|
||||
|lc| lc + self.variable,
|
||||
|lc| lc + inv,
|
||||
|lc| lc + CS::one()
|
||||
);
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
/// Takes two allocated numbers (a, b) and returns
|
||||
/// (b, a) if the condition is true, and (a, b)
|
||||
/// otherwise.
|
||||
pub fn conditionally_reverse<CS>(
|
||||
mut cs: CS,
|
||||
a: &Self,
|
||||
b: &Self,
|
||||
condition: &Boolean
|
||||
) -> Result<(Self, Self), SynthesisError>
|
||||
where CS: ConstraintSystem<E>
|
||||
{
|
||||
let c = Self::alloc(
|
||||
cs.namespace(|| "conditional reversal result 1"),
|
||||
|| {
|
||||
if *condition.get_value().get()? {
|
||||
Ok(*b.value.get()?)
|
||||
} else {
|
||||
Ok(*a.value.get()?)
|
||||
}
|
||||
}
|
||||
)?;
|
||||
|
||||
cs.enforce(
|
||||
|| "first conditional reversal",
|
||||
|lc| lc + a.variable - b.variable,
|
||||
|_| condition.lc(CS::one(), E::Fr::one()),
|
||||
|lc| lc + a.variable - c.variable
|
||||
);
|
||||
|
||||
let d = Self::alloc(
|
||||
cs.namespace(|| "conditional reversal result 2"),
|
||||
|| {
|
||||
if *condition.get_value().get()? {
|
||||
Ok(*a.value.get()?)
|
||||
} else {
|
||||
Ok(*b.value.get()?)
|
||||
}
|
||||
}
|
||||
)?;
|
||||
|
||||
cs.enforce(
|
||||
|| "second conditional reversal",
|
||||
|lc| lc + b.variable - a.variable,
|
||||
|_| condition.lc(CS::one(), E::Fr::one()),
|
||||
|lc| lc + b.variable - d.variable
|
||||
);
|
||||
|
||||
Ok((c, d))
|
||||
}
|
||||
|
||||
pub fn get_value(&self) -> Option<E::Fr> {
|
||||
self.value
|
||||
}
|
||||
|
||||
pub fn get_variable(&self) -> Variable {
|
||||
self.variable
|
||||
}
|
||||
}
|
||||
|
||||
pub struct Num<E: Engine> {
|
||||
value: Option<E::Fr>,
|
||||
lc: LinearCombination<E>
|
||||
}
|
||||
|
||||
impl<E: Engine> From<AllocatedNum<E>> for Num<E> {
|
||||
fn from(num: AllocatedNum<E>) -> Num<E> {
|
||||
Num {
|
||||
value: num.value,
|
||||
lc: LinearCombination::<E>::zero() + num.variable
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl<E: Engine> Num<E> {
|
||||
pub fn zero() -> Self {
|
||||
Num {
|
||||
value: Some(E::Fr::zero()),
|
||||
lc: LinearCombination::zero()
|
||||
}
|
||||
}
|
||||
|
||||
pub fn get_value(&self) -> Option<E::Fr> {
|
||||
self.value
|
||||
}
|
||||
|
||||
pub fn lc(&self, coeff: E::Fr) -> LinearCombination<E> {
|
||||
LinearCombination::zero() + (coeff, &self.lc)
|
||||
}
|
||||
|
||||
pub fn add_bool_with_coeff(
|
||||
self,
|
||||
one: Variable,
|
||||
bit: &Boolean,
|
||||
coeff: E::Fr
|
||||
) -> Self
|
||||
{
|
||||
let newval = match (self.value, bit.get_value()) {
|
||||
(Some(mut curval), Some(bval)) => {
|
||||
if bval {
|
||||
curval.add_assign(&coeff);
|
||||
}
|
||||
|
||||
Some(curval)
|
||||
},
|
||||
_ => None
|
||||
};
|
||||
|
||||
Num {
|
||||
value: newval,
|
||||
lc: self.lc + &bit.lc(one, coeff)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod test {
|
||||
use rand::{SeedableRng, Rand, Rng, XorShiftRng};
|
||||
use bellman::{ConstraintSystem};
|
||||
use pairing::bls12_381::{Bls12, Fr};
|
||||
use pairing::{Field, PrimeField, BitIterator};
|
||||
use ::circuit::test::*;
|
||||
use super::{AllocatedNum, Boolean};
|
||||
|
||||
#[test]
|
||||
fn test_allocated_num() {
|
||||
let mut cs = TestConstraintSystem::<Bls12>::new();
|
||||
|
||||
AllocatedNum::alloc(&mut cs, || Ok(Fr::one())).unwrap();
|
||||
|
||||
assert!(cs.get("num") == Fr::one());
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_num_squaring() {
|
||||
let mut cs = TestConstraintSystem::<Bls12>::new();
|
||||
|
||||
let n = AllocatedNum::alloc(&mut cs, || Ok(Fr::from_str("3").unwrap())).unwrap();
|
||||
let n2 = n.square(&mut cs).unwrap();
|
||||
|
||||
assert!(cs.is_satisfied());
|
||||
assert!(cs.get("squared num") == Fr::from_str("9").unwrap());
|
||||
assert!(n2.value.unwrap() == Fr::from_str("9").unwrap());
|
||||
cs.set("squared num", Fr::from_str("10").unwrap());
|
||||
assert!(!cs.is_satisfied());
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_num_multiplication() {
|
||||
let mut cs = TestConstraintSystem::<Bls12>::new();
|
||||
|
||||
let n = AllocatedNum::alloc(cs.namespace(|| "a"), || Ok(Fr::from_str("12").unwrap())).unwrap();
|
||||
let n2 = AllocatedNum::alloc(cs.namespace(|| "b"), || Ok(Fr::from_str("10").unwrap())).unwrap();
|
||||
let n3 = n.mul(&mut cs, &n2).unwrap();
|
||||
|
||||
assert!(cs.is_satisfied());
|
||||
assert!(cs.get("product num") == Fr::from_str("120").unwrap());
|
||||
assert!(n3.value.unwrap() == Fr::from_str("120").unwrap());
|
||||
cs.set("product num", Fr::from_str("121").unwrap());
|
||||
assert!(!cs.is_satisfied());
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_num_conditional_reversal() {
|
||||
let mut rng = XorShiftRng::from_seed([0x3dbe6259, 0x8d313d76, 0x3237db17, 0xe5bc0654]);
|
||||
{
|
||||
let mut cs = TestConstraintSystem::<Bls12>::new();
|
||||
|
||||
let a = AllocatedNum::alloc(cs.namespace(|| "a"), || Ok(rng.gen())).unwrap();
|
||||
let b = AllocatedNum::alloc(cs.namespace(|| "b"), || Ok(rng.gen())).unwrap();
|
||||
let condition = Boolean::constant(false);
|
||||
let (c, d) = AllocatedNum::conditionally_reverse(&mut cs, &a, &b, &condition).unwrap();
|
||||
|
||||
assert!(cs.is_satisfied());
|
||||
|
||||
assert_eq!(a.value.unwrap(), c.value.unwrap());
|
||||
assert_eq!(b.value.unwrap(), d.value.unwrap());
|
||||
}
|
||||
|
||||
{
|
||||
let mut cs = TestConstraintSystem::<Bls12>::new();
|
||||
|
||||
let a = AllocatedNum::alloc(cs.namespace(|| "a"), || Ok(rng.gen())).unwrap();
|
||||
let b = AllocatedNum::alloc(cs.namespace(|| "b"), || Ok(rng.gen())).unwrap();
|
||||
let condition = Boolean::constant(true);
|
||||
let (c, d) = AllocatedNum::conditionally_reverse(&mut cs, &a, &b, &condition).unwrap();
|
||||
|
||||
assert!(cs.is_satisfied());
|
||||
|
||||
assert_eq!(a.value.unwrap(), d.value.unwrap());
|
||||
assert_eq!(b.value.unwrap(), c.value.unwrap());
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_num_nonzero() {
|
||||
{
|
||||
let mut cs = TestConstraintSystem::<Bls12>::new();
|
||||
|
||||
let n = AllocatedNum::alloc(&mut cs, || Ok(Fr::from_str("3").unwrap())).unwrap();
|
||||
n.assert_nonzero(&mut cs).unwrap();
|
||||
|
||||
assert!(cs.is_satisfied());
|
||||
cs.set("ephemeral inverse", Fr::from_str("3").unwrap());
|
||||
assert!(cs.which_is_unsatisfied() == Some("nonzero assertion constraint"));
|
||||
}
|
||||
{
|
||||
let mut cs = TestConstraintSystem::<Bls12>::new();
|
||||
|
||||
let n = AllocatedNum::alloc(&mut cs, || Ok(Fr::zero())).unwrap();
|
||||
assert!(n.assert_nonzero(&mut cs).is_err());
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_into_bits_strict() {
|
||||
let mut negone = Fr::one();
|
||||
negone.negate();
|
||||
|
||||
let mut cs = TestConstraintSystem::<Bls12>::new();
|
||||
|
||||
let n = AllocatedNum::alloc(&mut cs, || Ok(negone)).unwrap();
|
||||
n.into_bits_le_strict(&mut cs).unwrap();
|
||||
|
||||
assert!(cs.is_satisfied());
|
||||
|
||||
// make the bit representation the characteristic
|
||||
cs.set("bit 254/boolean", Fr::one());
|
||||
|
||||
// this makes the conditional boolean constraint fail
|
||||
assert_eq!(cs.which_is_unsatisfied().unwrap(), "bit 254/boolean constraint");
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_into_bits() {
|
||||
let mut rng = XorShiftRng::from_seed([0x3dbe6259, 0x8d313d76, 0x3237db17, 0xe5bc0654]);
|
||||
|
||||
for i in 0..200 {
|
||||
let r = Fr::rand(&mut rng);
|
||||
let mut cs = TestConstraintSystem::<Bls12>::new();
|
||||
|
||||
let n = AllocatedNum::alloc(&mut cs, || Ok(r)).unwrap();
|
||||
|
||||
let bits = if i % 2 == 0 {
|
||||
n.into_bits_le(&mut cs).unwrap()
|
||||
} else {
|
||||
n.into_bits_le_strict(&mut cs).unwrap()
|
||||
};
|
||||
|
||||
assert!(cs.is_satisfied());
|
||||
|
||||
for (b, a) in BitIterator::new(r.into_repr()).skip(1).zip(bits.iter().rev()) {
|
||||
if let &Boolean::Is(ref a) = a {
|
||||
assert_eq!(b, a.get_value().unwrap());
|
||||
} else {
|
||||
unreachable!()
|
||||
}
|
||||
}
|
||||
|
||||
cs.set("num", Fr::rand(&mut rng));
|
||||
assert!(!cs.is_satisfied());
|
||||
cs.set("num", r);
|
||||
assert!(cs.is_satisfied());
|
||||
|
||||
for i in 0..Fr::NUM_BITS {
|
||||
let name = format!("bit {}/boolean", i);
|
||||
let cur = cs.get(&name);
|
||||
let mut tmp = Fr::one();
|
||||
tmp.sub_assign(&cur);
|
||||
cs.set(&name, tmp);
|
||||
assert!(!cs.is_satisfied());
|
||||
cs.set(&name, cur);
|
||||
assert!(cs.is_satisfied());
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
194
sapling-crypto/src/circuit/pedersen_hash.rs
Normal file
194
sapling-crypto/src/circuit/pedersen_hash.rs
Normal file
@@ -0,0 +1,194 @@
|
||||
use super::*;
|
||||
use super::ecc::{
|
||||
MontgomeryPoint,
|
||||
EdwardsPoint
|
||||
};
|
||||
use super::boolean::Boolean;
|
||||
use ::jubjub::*;
|
||||
use bellman::{
|
||||
ConstraintSystem
|
||||
};
|
||||
use super::lookup::*;
|
||||
pub use pedersen_hash::Personalization;
|
||||
|
||||
impl Personalization {
|
||||
fn get_constant_bools(&self) -> Vec<Boolean> {
|
||||
self.get_bits()
|
||||
.into_iter()
|
||||
.map(|e| Boolean::constant(e))
|
||||
.collect()
|
||||
}
|
||||
}
|
||||
|
||||
pub fn pedersen_hash<E: JubjubEngine, CS>(
|
||||
mut cs: CS,
|
||||
personalization: Personalization,
|
||||
bits: &[Boolean],
|
||||
params: &E::Params
|
||||
) -> Result<EdwardsPoint<E>, SynthesisError>
|
||||
where CS: ConstraintSystem<E>
|
||||
{
|
||||
let personalization = personalization.get_constant_bools();
|
||||
assert_eq!(personalization.len(), 6);
|
||||
|
||||
let mut edwards_result = None;
|
||||
let mut bits = personalization.iter().chain(bits.iter());
|
||||
let mut segment_generators = params.pedersen_circuit_generators().iter();
|
||||
let boolean_false = Boolean::constant(false);
|
||||
|
||||
let mut segment_i = 0;
|
||||
loop {
|
||||
let mut segment_result = None;
|
||||
let mut segment_windows = &segment_generators.next()
|
||||
.expect("enough segments")[..];
|
||||
|
||||
let mut window_i = 0;
|
||||
while let Some(a) = bits.next() {
|
||||
let b = bits.next().unwrap_or(&boolean_false);
|
||||
let c = bits.next().unwrap_or(&boolean_false);
|
||||
|
||||
let tmp = lookup3_xy_with_conditional_negation(
|
||||
cs.namespace(|| format!("segment {}, window {}", segment_i, window_i)),
|
||||
&[a.clone(), b.clone(), c.clone()],
|
||||
&segment_windows[0]
|
||||
)?;
|
||||
|
||||
let tmp = MontgomeryPoint::interpret_unchecked(tmp.0, tmp.1);
|
||||
|
||||
match segment_result {
|
||||
None => {
|
||||
segment_result = Some(tmp);
|
||||
},
|
||||
Some(ref mut segment_result) => {
|
||||
*segment_result = tmp.add(
|
||||
cs.namespace(|| format!("addition of segment {}, window {}", segment_i, window_i)),
|
||||
segment_result,
|
||||
params
|
||||
)?;
|
||||
}
|
||||
}
|
||||
|
||||
segment_windows = &segment_windows[1..];
|
||||
|
||||
if segment_windows.len() == 0 {
|
||||
break;
|
||||
}
|
||||
|
||||
window_i += 1;
|
||||
}
|
||||
|
||||
match segment_result {
|
||||
Some(segment_result) => {
|
||||
// Convert this segment into twisted Edwards form.
|
||||
let segment_result = segment_result.into_edwards(
|
||||
cs.namespace(|| format!("conversion of segment {} into edwards", segment_i)),
|
||||
params
|
||||
)?;
|
||||
|
||||
match edwards_result {
|
||||
Some(ref mut edwards_result) => {
|
||||
*edwards_result = segment_result.add(
|
||||
cs.namespace(|| format!("addition of segment {} to accumulator", segment_i)),
|
||||
edwards_result,
|
||||
params
|
||||
)?;
|
||||
},
|
||||
None => {
|
||||
edwards_result = Some(segment_result);
|
||||
}
|
||||
}
|
||||
},
|
||||
None => {
|
||||
// We didn't process any new bits.
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
segment_i += 1;
|
||||
}
|
||||
|
||||
Ok(edwards_result.unwrap())
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod test {
|
||||
use rand::{SeedableRng, Rng, XorShiftRng};
|
||||
use super::*;
|
||||
use ::circuit::test::*;
|
||||
use ::circuit::boolean::{Boolean, AllocatedBit};
|
||||
use pairing::bls12_381::{Bls12, Fr};
|
||||
use pairing::PrimeField;
|
||||
|
||||
#[test]
|
||||
fn test_pedersen_hash_constraints() {
|
||||
let mut rng = XorShiftRng::from_seed([0x3dbe6259, 0x8d313d76, 0x3237db17, 0xe5bc0654]);
|
||||
let params = &JubjubBls12::new();
|
||||
let mut cs = TestConstraintSystem::<Bls12>::new();
|
||||
|
||||
let input: Vec<bool> = (0..(Fr::NUM_BITS * 2)).map(|_| rng.gen()).collect();
|
||||
|
||||
let input_bools: Vec<Boolean> = input.iter().enumerate().map(|(i, b)| {
|
||||
Boolean::from(
|
||||
AllocatedBit::alloc(cs.namespace(|| format!("input {}", i)), Some(*b)).unwrap()
|
||||
)
|
||||
}).collect();
|
||||
|
||||
pedersen_hash(
|
||||
cs.namespace(|| "pedersen hash"),
|
||||
Personalization::NoteCommitment,
|
||||
&input_bools,
|
||||
params
|
||||
).unwrap();
|
||||
|
||||
assert!(cs.is_satisfied());
|
||||
assert_eq!(cs.num_constraints(), 1377);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_pedersen_hash() {
|
||||
let mut rng = XorShiftRng::from_seed([0x3dbe6259, 0x8d313d76, 0x3237db17, 0xe5bc0654]);
|
||||
let params = &JubjubBls12::new();
|
||||
|
||||
for length in 0..751 {
|
||||
for _ in 0..5 {
|
||||
let mut input: Vec<bool> = (0..length).map(|_| rng.gen()).collect();
|
||||
|
||||
let mut cs = TestConstraintSystem::<Bls12>::new();
|
||||
|
||||
let input_bools: Vec<Boolean> = input.iter().enumerate().map(|(i, b)| {
|
||||
Boolean::from(
|
||||
AllocatedBit::alloc(cs.namespace(|| format!("input {}", i)), Some(*b)).unwrap()
|
||||
)
|
||||
}).collect();
|
||||
|
||||
let res = pedersen_hash(
|
||||
cs.namespace(|| "pedersen hash"),
|
||||
Personalization::MerkleTree(1),
|
||||
&input_bools,
|
||||
params
|
||||
).unwrap();
|
||||
|
||||
assert!(cs.is_satisfied());
|
||||
|
||||
let expected = ::pedersen_hash::pedersen_hash::<Bls12, _>(
|
||||
Personalization::MerkleTree(1),
|
||||
input.clone().into_iter(),
|
||||
params
|
||||
).into_xy();
|
||||
|
||||
assert_eq!(res.get_x().get_value().unwrap(), expected.0);
|
||||
assert_eq!(res.get_y().get_value().unwrap(), expected.1);
|
||||
|
||||
// Test against the output of a different personalization
|
||||
let unexpected = ::pedersen_hash::pedersen_hash::<Bls12, _>(
|
||||
Personalization::MerkleTree(0),
|
||||
input.into_iter(),
|
||||
params
|
||||
).into_xy();
|
||||
|
||||
assert!(res.get_x().get_value().unwrap() != unexpected.0);
|
||||
assert!(res.get_y().get_value().unwrap() != unexpected.1);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
815
sapling-crypto/src/circuit/sapling/mod.rs
Normal file
815
sapling-crypto/src/circuit/sapling/mod.rs
Normal file
@@ -0,0 +1,815 @@
|
||||
use pairing::{
|
||||
PrimeField,
|
||||
PrimeFieldRepr,
|
||||
Field,
|
||||
};
|
||||
|
||||
use bellman::{
|
||||
SynthesisError,
|
||||
ConstraintSystem,
|
||||
Circuit
|
||||
};
|
||||
|
||||
use jubjub::{
|
||||
JubjubEngine,
|
||||
FixedGenerators
|
||||
};
|
||||
|
||||
use constants;
|
||||
|
||||
use primitives::{
|
||||
ValueCommitment,
|
||||
ProofGenerationKey,
|
||||
PaymentAddress
|
||||
};
|
||||
|
||||
use super::Assignment;
|
||||
use super::boolean;
|
||||
use super::ecc;
|
||||
use super::pedersen_hash;
|
||||
use super::blake2s;
|
||||
use super::num;
|
||||
use super::multipack;
|
||||
|
||||
/// This is an instance of the `Spend` circuit.
|
||||
pub struct Spend<'a, E: JubjubEngine> {
|
||||
pub params: &'a E::Params,
|
||||
|
||||
/// Pedersen commitment to the value being spent
|
||||
pub value_commitment: Option<ValueCommitment<E>>,
|
||||
|
||||
/// Key required to construct proofs for spending notes
|
||||
/// for a particular spending key
|
||||
pub proof_generation_key: Option<ProofGenerationKey<E>>,
|
||||
|
||||
/// The payment address associated with the note
|
||||
pub payment_address: Option<PaymentAddress<E>>,
|
||||
|
||||
/// The randomness of the note commitment
|
||||
pub commitment_randomness: Option<E::Fs>,
|
||||
|
||||
/// Re-randomization of the public key
|
||||
pub ar: Option<E::Fs>,
|
||||
|
||||
/// The authentication path of the commitment in the tree
|
||||
pub auth_path: Vec<Option<(E::Fr, bool)>>,
|
||||
|
||||
/// The anchor; the root of the tree. If the note being
|
||||
/// spent is zero-value, this can be anything.
|
||||
pub anchor: Option<E::Fr>
|
||||
}
|
||||
|
||||
/// This is an output circuit instance.
|
||||
pub struct Output<'a, E: JubjubEngine> {
|
||||
pub params: &'a E::Params,
|
||||
|
||||
/// Pedersen commitment to the value being spent
|
||||
pub value_commitment: Option<ValueCommitment<E>>,
|
||||
|
||||
/// The payment address of the recipient
|
||||
pub payment_address: Option<PaymentAddress<E>>,
|
||||
|
||||
/// The randomness used to hide the note commitment data
|
||||
pub commitment_randomness: Option<E::Fs>,
|
||||
|
||||
/// The ephemeral secret key for DH with recipient
|
||||
pub esk: Option<E::Fs>
|
||||
}
|
||||
|
||||
/// Exposes a Pedersen commitment to the value as an
|
||||
/// input to the circuit
|
||||
fn expose_value_commitment<E, CS>(
|
||||
mut cs: CS,
|
||||
value_commitment: Option<ValueCommitment<E>>,
|
||||
params: &E::Params
|
||||
) -> Result<Vec<boolean::Boolean>, SynthesisError>
|
||||
where E: JubjubEngine,
|
||||
CS: ConstraintSystem<E>
|
||||
{
|
||||
// Booleanize the value into little-endian bit order
|
||||
let value_bits = boolean::u64_into_boolean_vec_le(
|
||||
cs.namespace(|| "value"),
|
||||
value_commitment.as_ref().map(|c| c.value)
|
||||
)?;
|
||||
|
||||
// Compute the note value in the exponent
|
||||
let value = ecc::fixed_base_multiplication(
|
||||
cs.namespace(|| "compute the value in the exponent"),
|
||||
FixedGenerators::ValueCommitmentValue,
|
||||
&value_bits,
|
||||
params
|
||||
)?;
|
||||
|
||||
// Booleanize the randomness. This does not ensure
|
||||
// the bit representation is "in the field" because
|
||||
// it doesn't matter for security.
|
||||
let rcv = boolean::field_into_boolean_vec_le(
|
||||
cs.namespace(|| "rcv"),
|
||||
value_commitment.as_ref().map(|c| c.randomness)
|
||||
)?;
|
||||
|
||||
// Compute the randomness in the exponent
|
||||
let rcv = ecc::fixed_base_multiplication(
|
||||
cs.namespace(|| "computation of rcv"),
|
||||
FixedGenerators::ValueCommitmentRandomness,
|
||||
&rcv,
|
||||
params
|
||||
)?;
|
||||
|
||||
// Compute the Pedersen commitment to the value
|
||||
let cv = value.add(
|
||||
cs.namespace(|| "computation of cv"),
|
||||
&rcv,
|
||||
params
|
||||
)?;
|
||||
|
||||
// Expose the commitment as an input to the circuit
|
||||
cv.inputize(cs.namespace(|| "commitment point"))?;
|
||||
|
||||
Ok(value_bits)
|
||||
}
|
||||
|
||||
impl<'a, E: JubjubEngine> Circuit<E> for Spend<'a, E> {
|
||||
fn synthesize<CS: ConstraintSystem<E>>(self, cs: &mut CS) -> Result<(), SynthesisError>
|
||||
{
|
||||
// Prover witnesses ak (ensures that it's on the curve)
|
||||
let ak = ecc::EdwardsPoint::witness(
|
||||
cs.namespace(|| "ak"),
|
||||
self.proof_generation_key.as_ref().map(|k| k.ak.clone()),
|
||||
self.params
|
||||
)?;
|
||||
|
||||
// There are no sensible attacks on small order points
|
||||
// of ak (that we're aware of!) but it's a cheap check,
|
||||
// so we do it.
|
||||
ak.assert_not_small_order(
|
||||
cs.namespace(|| "ak not small order"),
|
||||
self.params
|
||||
)?;
|
||||
|
||||
// Rerandomize ak and expose it as an input to the circuit
|
||||
{
|
||||
let ar = boolean::field_into_boolean_vec_le(
|
||||
cs.namespace(|| "ar"),
|
||||
self.ar
|
||||
)?;
|
||||
|
||||
// Compute the randomness in the exponent
|
||||
let ar = ecc::fixed_base_multiplication(
|
||||
cs.namespace(|| "computation of randomization for the signing key"),
|
||||
FixedGenerators::SpendingKeyGenerator,
|
||||
&ar,
|
||||
self.params
|
||||
)?;
|
||||
|
||||
let rk = ak.add(
|
||||
cs.namespace(|| "computation of rk"),
|
||||
&ar,
|
||||
self.params
|
||||
)?;
|
||||
|
||||
rk.inputize(cs.namespace(|| "rk"))?;
|
||||
}
|
||||
|
||||
// Compute nk = [nsk] ProofGenerationKey
|
||||
let nk;
|
||||
{
|
||||
// Witness nsk as bits
|
||||
let nsk = boolean::field_into_boolean_vec_le(
|
||||
cs.namespace(|| "nsk"),
|
||||
self.proof_generation_key.as_ref().map(|k| k.nsk.clone())
|
||||
)?;
|
||||
|
||||
// NB: We don't ensure that the bit representation of nsk
|
||||
// is "in the field" (Fs) because it's not used except to
|
||||
// demonstrate the prover knows it. If they know a
|
||||
// congruency then that's equivalent.
|
||||
|
||||
// Compute nk = [nsk] ProvingPublicKey
|
||||
nk = ecc::fixed_base_multiplication(
|
||||
cs.namespace(|| "computation of nk"),
|
||||
FixedGenerators::ProofGenerationKey,
|
||||
&nsk,
|
||||
self.params
|
||||
)?;
|
||||
}
|
||||
|
||||
// This is the "viewing key" preimage for CRH^ivk
|
||||
let mut ivk_preimage = vec![];
|
||||
|
||||
// Place ak in the preimage for CRH^ivk
|
||||
ivk_preimage.extend(
|
||||
ak.repr(cs.namespace(|| "representation of ak"))?
|
||||
);
|
||||
|
||||
// This is the nullifier preimage for PRF^nf
|
||||
let mut nf_preimage = vec![];
|
||||
|
||||
// Extend ivk and nf preimages with the representation of
|
||||
// nk.
|
||||
{
|
||||
let repr_nk = nk.repr(
|
||||
cs.namespace(|| "representation of nk")
|
||||
)?;
|
||||
|
||||
ivk_preimage.extend(repr_nk.iter().cloned());
|
||||
nf_preimage.extend(repr_nk);
|
||||
}
|
||||
|
||||
assert_eq!(ivk_preimage.len(), 512);
|
||||
assert_eq!(nf_preimage.len(), 256);
|
||||
|
||||
// Compute the incoming viewing key ivk
|
||||
let mut ivk = blake2s::blake2s(
|
||||
cs.namespace(|| "computation of ivk"),
|
||||
&ivk_preimage,
|
||||
constants::CRH_IVK_PERSONALIZATION
|
||||
)?;
|
||||
|
||||
// drop_5 to ensure it's in the field
|
||||
ivk.truncate(E::Fs::CAPACITY as usize);
|
||||
|
||||
// Witness g_d, checking that it's on the curve.
|
||||
let g_d = {
|
||||
// This binding is to avoid a weird edge case in Rust's
|
||||
// ownership/borrowing rules. self is partially moved
|
||||
// above, but the closure for and_then will have to
|
||||
// move self (or a reference to self) to reference
|
||||
// self.params, so we have to copy self.params here.
|
||||
let params = self.params;
|
||||
|
||||
ecc::EdwardsPoint::witness(
|
||||
cs.namespace(|| "witness g_d"),
|
||||
self.payment_address.as_ref().and_then(|a| a.g_d(params)),
|
||||
self.params
|
||||
)?
|
||||
};
|
||||
|
||||
// Check that g_d is not small order. Technically, this check
|
||||
// is already done in the Output circuit, and this proof ensures
|
||||
// g_d is bound to a product of that check, but for defense in
|
||||
// depth let's check it anyway. It's cheap.
|
||||
g_d.assert_not_small_order(
|
||||
cs.namespace(|| "g_d not small order"),
|
||||
self.params
|
||||
)?;
|
||||
|
||||
// Compute pk_d = g_d^ivk
|
||||
let pk_d = g_d.mul(
|
||||
cs.namespace(|| "compute pk_d"),
|
||||
&ivk,
|
||||
self.params
|
||||
)?;
|
||||
|
||||
// Compute note contents:
|
||||
// value (in big endian) followed by g_d and pk_d
|
||||
let mut note_contents = vec![];
|
||||
|
||||
// Handle the value; we'll need it later for the
|
||||
// dummy input check.
|
||||
let mut value_num = num::Num::zero();
|
||||
{
|
||||
// Get the value in little-endian bit order
|
||||
let value_bits = expose_value_commitment(
|
||||
cs.namespace(|| "value commitment"),
|
||||
self.value_commitment,
|
||||
self.params
|
||||
)?;
|
||||
|
||||
// Compute the note's value as a linear combination
|
||||
// of the bits.
|
||||
let mut coeff = E::Fr::one();
|
||||
for bit in &value_bits {
|
||||
value_num = value_num.add_bool_with_coeff(
|
||||
CS::one(),
|
||||
bit,
|
||||
coeff
|
||||
);
|
||||
coeff.double();
|
||||
}
|
||||
|
||||
// Place the value in the note
|
||||
note_contents.extend(value_bits);
|
||||
}
|
||||
|
||||
// Place g_d in the note
|
||||
note_contents.extend(
|
||||
g_d.repr(cs.namespace(|| "representation of g_d"))?
|
||||
);
|
||||
|
||||
// Place pk_d in the note
|
||||
note_contents.extend(
|
||||
pk_d.repr(cs.namespace(|| "representation of pk_d"))?
|
||||
);
|
||||
|
||||
assert_eq!(
|
||||
note_contents.len(),
|
||||
64 + // value
|
||||
256 + // g_d
|
||||
256 // p_d
|
||||
);
|
||||
|
||||
// Compute the hash of the note contents
|
||||
let mut cm = pedersen_hash::pedersen_hash(
|
||||
cs.namespace(|| "note content hash"),
|
||||
pedersen_hash::Personalization::NoteCommitment,
|
||||
¬e_contents,
|
||||
self.params
|
||||
)?;
|
||||
|
||||
{
|
||||
// Booleanize the randomness for the note commitment
|
||||
let rcm = boolean::field_into_boolean_vec_le(
|
||||
cs.namespace(|| "rcm"),
|
||||
self.commitment_randomness
|
||||
)?;
|
||||
|
||||
// Compute the note commitment randomness in the exponent
|
||||
let rcm = ecc::fixed_base_multiplication(
|
||||
cs.namespace(|| "computation of commitment randomness"),
|
||||
FixedGenerators::NoteCommitmentRandomness,
|
||||
&rcm,
|
||||
self.params
|
||||
)?;
|
||||
|
||||
// Randomize the note commitment. Pedersen hashes are not
|
||||
// themselves hiding commitments.
|
||||
cm = cm.add(
|
||||
cs.namespace(|| "randomization of note commitment"),
|
||||
&rcm,
|
||||
self.params
|
||||
)?;
|
||||
}
|
||||
|
||||
// This will store (least significant bit first)
|
||||
// the position of the note in the tree, for use
|
||||
// in nullifier computation.
|
||||
let mut position_bits = vec![];
|
||||
|
||||
// This is an injective encoding, as cur is a
|
||||
// point in the prime order subgroup.
|
||||
let mut cur = cm.get_x().clone();
|
||||
|
||||
// Ascend the merkle tree authentication path
|
||||
for (i, e) in self.auth_path.into_iter().enumerate() {
|
||||
let cs = &mut cs.namespace(|| format!("merkle tree hash {}", i));
|
||||
|
||||
// Determines if the current subtree is the "right" leaf at this
|
||||
// depth of the tree.
|
||||
let cur_is_right = boolean::Boolean::from(boolean::AllocatedBit::alloc(
|
||||
cs.namespace(|| "position bit"),
|
||||
e.map(|e| e.1)
|
||||
)?);
|
||||
|
||||
// Push this boolean for nullifier computation later
|
||||
position_bits.push(cur_is_right.clone());
|
||||
|
||||
// Witness the authentication path element adjacent
|
||||
// at this depth.
|
||||
let path_element = num::AllocatedNum::alloc(
|
||||
cs.namespace(|| "path element"),
|
||||
|| {
|
||||
Ok(e.get()?.0)
|
||||
}
|
||||
)?;
|
||||
|
||||
// Swap the two if the current subtree is on the right
|
||||
let (xl, xr) = num::AllocatedNum::conditionally_reverse(
|
||||
cs.namespace(|| "conditional reversal of preimage"),
|
||||
&cur,
|
||||
&path_element,
|
||||
&cur_is_right
|
||||
)?;
|
||||
|
||||
// We don't need to be strict, because the function is
|
||||
// collision-resistant. If the prover witnesses a congruency,
|
||||
// they will be unable to find an authentication path in the
|
||||
// tree with high probability.
|
||||
let mut preimage = vec![];
|
||||
preimage.extend(xl.into_bits_le(cs.namespace(|| "xl into bits"))?);
|
||||
preimage.extend(xr.into_bits_le(cs.namespace(|| "xr into bits"))?);
|
||||
|
||||
// Compute the new subtree value
|
||||
cur = pedersen_hash::pedersen_hash(
|
||||
cs.namespace(|| "computation of pedersen hash"),
|
||||
pedersen_hash::Personalization::MerkleTree(i),
|
||||
&preimage,
|
||||
self.params
|
||||
)?.get_x().clone(); // Injective encoding
|
||||
}
|
||||
|
||||
{
|
||||
let real_anchor_value = self.anchor;
|
||||
|
||||
// Allocate the "real" anchor that will be exposed.
|
||||
let rt = num::AllocatedNum::alloc(
|
||||
cs.namespace(|| "conditional anchor"),
|
||||
|| {
|
||||
Ok(*real_anchor_value.get()?)
|
||||
}
|
||||
)?;
|
||||
|
||||
// (cur - rt) * value = 0
|
||||
// if value is zero, cur and rt can be different
|
||||
// if value is nonzero, they must be equal
|
||||
cs.enforce(
|
||||
|| "conditionally enforce correct root",
|
||||
|lc| lc + cur.get_variable() - rt.get_variable(),
|
||||
|lc| lc + &value_num.lc(E::Fr::one()),
|
||||
|lc| lc
|
||||
);
|
||||
|
||||
// Expose the anchor
|
||||
rt.inputize(cs.namespace(|| "anchor"))?;
|
||||
}
|
||||
|
||||
// Compute the cm + g^position for preventing
|
||||
// faerie gold attacks
|
||||
let mut rho = cm;
|
||||
{
|
||||
// Compute the position in the exponent
|
||||
let position = ecc::fixed_base_multiplication(
|
||||
cs.namespace(|| "g^position"),
|
||||
FixedGenerators::NullifierPosition,
|
||||
&position_bits,
|
||||
self.params
|
||||
)?;
|
||||
|
||||
// Add the position to the commitment
|
||||
rho = rho.add(
|
||||
cs.namespace(|| "faerie gold prevention"),
|
||||
&position,
|
||||
self.params
|
||||
)?;
|
||||
}
|
||||
|
||||
// Let's compute nf = BLAKE2s(nk || rho)
|
||||
nf_preimage.extend(
|
||||
rho.repr(cs.namespace(|| "representation of rho"))?
|
||||
);
|
||||
|
||||
assert_eq!(nf_preimage.len(), 512);
|
||||
|
||||
// Compute nf
|
||||
let nf = blake2s::blake2s(
|
||||
cs.namespace(|| "nf computation"),
|
||||
&nf_preimage,
|
||||
constants::PRF_NF_PERSONALIZATION
|
||||
)?;
|
||||
|
||||
multipack::pack_into_inputs(cs.namespace(|| "pack nullifier"), &nf)
|
||||
}
|
||||
}
|
||||
|
||||
impl<'a, E: JubjubEngine> Circuit<E> for Output<'a, E> {
|
||||
fn synthesize<CS: ConstraintSystem<E>>(self, cs: &mut CS) -> Result<(), SynthesisError>
|
||||
{
|
||||
// Let's start to construct our note, which contains
|
||||
// value (big endian)
|
||||
let mut note_contents = vec![];
|
||||
|
||||
// Expose the value commitment and place the value
|
||||
// in the note.
|
||||
note_contents.extend(expose_value_commitment(
|
||||
cs.namespace(|| "value commitment"),
|
||||
self.value_commitment,
|
||||
self.params
|
||||
)?);
|
||||
|
||||
// Let's deal with g_d
|
||||
{
|
||||
let params = self.params;
|
||||
|
||||
// Prover witnesses g_d, ensuring it's on the
|
||||
// curve.
|
||||
let g_d = ecc::EdwardsPoint::witness(
|
||||
cs.namespace(|| "witness g_d"),
|
||||
self.payment_address.as_ref().and_then(|a| a.g_d(params)),
|
||||
self.params
|
||||
)?;
|
||||
|
||||
// g_d is ensured to be large order. The relationship
|
||||
// between g_d and pk_d ultimately binds ivk to the
|
||||
// note. If this were a small order point, it would
|
||||
// not do this correctly, and the prover could
|
||||
// double-spend by finding random ivk's that satisfy
|
||||
// the relationship.
|
||||
//
|
||||
// Further, if it were small order, epk would be
|
||||
// small order too!
|
||||
g_d.assert_not_small_order(
|
||||
cs.namespace(|| "g_d not small order"),
|
||||
self.params
|
||||
)?;
|
||||
|
||||
// Extend our note contents with the representation of
|
||||
// g_d.
|
||||
note_contents.extend(
|
||||
g_d.repr(cs.namespace(|| "representation of g_d"))?
|
||||
);
|
||||
|
||||
// Booleanize our ephemeral secret key
|
||||
let esk = boolean::field_into_boolean_vec_le(
|
||||
cs.namespace(|| "esk"),
|
||||
self.esk
|
||||
)?;
|
||||
|
||||
// Create the ephemeral public key from g_d.
|
||||
let epk = g_d.mul(
|
||||
cs.namespace(|| "epk computation"),
|
||||
&esk,
|
||||
self.params
|
||||
)?;
|
||||
|
||||
// Expose epk publicly.
|
||||
epk.inputize(cs.namespace(|| "epk"))?;
|
||||
}
|
||||
|
||||
// Now let's deal with pk_d. We don't do any checks and
|
||||
// essentially allow the prover to witness any 256 bits
|
||||
// they would like.
|
||||
{
|
||||
// Just grab pk_d from the witness
|
||||
let pk_d = self.payment_address.as_ref().map(|e| e.pk_d.into_xy());
|
||||
|
||||
// Witness the y-coordinate, encoded as little
|
||||
// endian bits (to match the representation)
|
||||
let y_contents = boolean::field_into_boolean_vec_le(
|
||||
cs.namespace(|| "pk_d bits of y"),
|
||||
pk_d.map(|e| e.1)
|
||||
)?;
|
||||
|
||||
// Witness the sign bit
|
||||
let sign_bit = boolean::Boolean::from(boolean::AllocatedBit::alloc(
|
||||
cs.namespace(|| "pk_d bit of x"),
|
||||
pk_d.map(|e| e.0.into_repr().is_odd())
|
||||
)?);
|
||||
|
||||
// Extend the note with pk_d representation
|
||||
note_contents.extend(y_contents);
|
||||
note_contents.push(sign_bit);
|
||||
}
|
||||
|
||||
assert_eq!(
|
||||
note_contents.len(),
|
||||
64 + // value
|
||||
256 + // g_d
|
||||
256 // pk_d
|
||||
);
|
||||
|
||||
// Compute the hash of the note contents
|
||||
let mut cm = pedersen_hash::pedersen_hash(
|
||||
cs.namespace(|| "note content hash"),
|
||||
pedersen_hash::Personalization::NoteCommitment,
|
||||
¬e_contents,
|
||||
self.params
|
||||
)?;
|
||||
|
||||
{
|
||||
// Booleanize the randomness
|
||||
let rcm = boolean::field_into_boolean_vec_le(
|
||||
cs.namespace(|| "rcm"),
|
||||
self.commitment_randomness
|
||||
)?;
|
||||
|
||||
// Compute the note commitment randomness in the exponent
|
||||
let rcm = ecc::fixed_base_multiplication(
|
||||
cs.namespace(|| "computation of commitment randomness"),
|
||||
FixedGenerators::NoteCommitmentRandomness,
|
||||
&rcm,
|
||||
self.params
|
||||
)?;
|
||||
|
||||
// Randomize our note commitment
|
||||
cm = cm.add(
|
||||
cs.namespace(|| "randomization of note commitment"),
|
||||
&rcm,
|
||||
self.params
|
||||
)?;
|
||||
}
|
||||
|
||||
// Only the x-coordinate of the output is revealed,
|
||||
// since we know it is prime order, and we know that
|
||||
// the x-coordinate is an injective encoding for
|
||||
// prime-order elements.
|
||||
cm.get_x().inputize(cs.namespace(|| "commitment"))?;
|
||||
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_input_circuit_with_bls12_381() {
|
||||
use pairing::{Field, BitIterator};
|
||||
use pairing::bls12_381::*;
|
||||
use rand::{SeedableRng, Rng, XorShiftRng};
|
||||
use ::circuit::test::*;
|
||||
use jubjub::{JubjubBls12, fs, edwards};
|
||||
|
||||
let params = &JubjubBls12::new();
|
||||
let rng = &mut XorShiftRng::from_seed([0x3dbe6259, 0x8d313d76, 0x3237db17, 0xe5bc0654]);
|
||||
|
||||
let tree_depth = 32;
|
||||
|
||||
for _ in 0..10 {
|
||||
let value_commitment = ValueCommitment {
|
||||
value: rng.gen(),
|
||||
randomness: rng.gen()
|
||||
};
|
||||
|
||||
let nsk: fs::Fs = rng.gen();
|
||||
let ak = edwards::Point::rand(rng, params).mul_by_cofactor(params);
|
||||
|
||||
let proof_generation_key = ::primitives::ProofGenerationKey {
|
||||
ak: ak.clone(),
|
||||
nsk: nsk.clone()
|
||||
};
|
||||
|
||||
let viewing_key = proof_generation_key.into_viewing_key(params);
|
||||
|
||||
let payment_address;
|
||||
|
||||
loop {
|
||||
let diversifier = ::primitives::Diversifier(rng.gen());
|
||||
|
||||
if let Some(p) = viewing_key.into_payment_address(
|
||||
diversifier,
|
||||
params
|
||||
)
|
||||
{
|
||||
payment_address = p;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
let g_d = payment_address.diversifier.g_d(params).unwrap();
|
||||
let commitment_randomness: fs::Fs = rng.gen();
|
||||
let auth_path = vec![Some((rng.gen(), rng.gen())); tree_depth];
|
||||
let ar: fs::Fs = rng.gen();
|
||||
|
||||
{
|
||||
let rk = viewing_key.rk(ar, params).into_xy();
|
||||
let expected_value_cm = value_commitment.cm(params).into_xy();
|
||||
let note = ::primitives::Note {
|
||||
value: value_commitment.value,
|
||||
g_d: g_d.clone(),
|
||||
pk_d: payment_address.pk_d.clone(),
|
||||
r: commitment_randomness.clone()
|
||||
};
|
||||
|
||||
let mut position = 0u64;
|
||||
let cm: Fr = note.cm(params);
|
||||
let mut cur = cm.clone();
|
||||
|
||||
for (i, val) in auth_path.clone().into_iter().enumerate()
|
||||
{
|
||||
let (uncle, b) = val.unwrap();
|
||||
|
||||
let mut lhs = cur;
|
||||
let mut rhs = uncle;
|
||||
|
||||
if b {
|
||||
::std::mem::swap(&mut lhs, &mut rhs);
|
||||
}
|
||||
|
||||
let mut lhs: Vec<bool> = BitIterator::new(lhs.into_repr()).collect();
|
||||
let mut rhs: Vec<bool> = BitIterator::new(rhs.into_repr()).collect();
|
||||
|
||||
lhs.reverse();
|
||||
rhs.reverse();
|
||||
|
||||
cur = ::pedersen_hash::pedersen_hash::<Bls12, _>(
|
||||
::pedersen_hash::Personalization::MerkleTree(i),
|
||||
lhs.into_iter()
|
||||
.take(Fr::NUM_BITS as usize)
|
||||
.chain(rhs.into_iter().take(Fr::NUM_BITS as usize)),
|
||||
params
|
||||
).into_xy().0;
|
||||
|
||||
if b {
|
||||
position |= 1 << i;
|
||||
}
|
||||
}
|
||||
|
||||
let expected_nf = note.nf(&viewing_key, position, params);
|
||||
let expected_nf = multipack::bytes_to_bits_le(&expected_nf);
|
||||
let expected_nf = multipack::compute_multipacking::<Bls12>(&expected_nf);
|
||||
assert_eq!(expected_nf.len(), 2);
|
||||
|
||||
let mut cs = TestConstraintSystem::<Bls12>::new();
|
||||
|
||||
let instance = Spend {
|
||||
params: params,
|
||||
value_commitment: Some(value_commitment.clone()),
|
||||
proof_generation_key: Some(proof_generation_key.clone()),
|
||||
payment_address: Some(payment_address.clone()),
|
||||
commitment_randomness: Some(commitment_randomness),
|
||||
ar: Some(ar),
|
||||
auth_path: auth_path.clone(),
|
||||
anchor: Some(cur)
|
||||
};
|
||||
|
||||
instance.synthesize(&mut cs).unwrap();
|
||||
|
||||
assert!(cs.is_satisfied());
|
||||
assert_eq!(cs.num_constraints(), 98777);
|
||||
assert_eq!(cs.hash(), "d37c738e83df5d9b0bb6495ac96abf21bcb2697477e2c15c2c7916ff7a3b6a89");
|
||||
|
||||
assert_eq!(cs.get("randomization of note commitment/x3/num"), cm);
|
||||
|
||||
assert_eq!(cs.num_inputs(), 8);
|
||||
assert_eq!(cs.get_input(0, "ONE"), Fr::one());
|
||||
assert_eq!(cs.get_input(1, "rk/x/input variable"), rk.0);
|
||||
assert_eq!(cs.get_input(2, "rk/y/input variable"), rk.1);
|
||||
assert_eq!(cs.get_input(3, "value commitment/commitment point/x/input variable"), expected_value_cm.0);
|
||||
assert_eq!(cs.get_input(4, "value commitment/commitment point/y/input variable"), expected_value_cm.1);
|
||||
assert_eq!(cs.get_input(5, "anchor/input variable"), cur);
|
||||
assert_eq!(cs.get_input(6, "pack nullifier/input 0"), expected_nf[0]);
|
||||
assert_eq!(cs.get_input(7, "pack nullifier/input 1"), expected_nf[1]);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_output_circuit_with_bls12_381() {
|
||||
use pairing::{Field};
|
||||
use pairing::bls12_381::*;
|
||||
use rand::{SeedableRng, Rng, XorShiftRng};
|
||||
use ::circuit::test::*;
|
||||
use jubjub::{JubjubBls12, fs, edwards};
|
||||
|
||||
let params = &JubjubBls12::new();
|
||||
let rng = &mut XorShiftRng::from_seed([0x3dbe6258, 0x8d313d76, 0x3237db17, 0xe5bc0654]);
|
||||
|
||||
for _ in 0..100 {
|
||||
let value_commitment = ValueCommitment {
|
||||
value: rng.gen(),
|
||||
randomness: rng.gen()
|
||||
};
|
||||
|
||||
let nsk: fs::Fs = rng.gen();
|
||||
let ak = edwards::Point::rand(rng, params).mul_by_cofactor(params);
|
||||
|
||||
let proof_generation_key = ::primitives::ProofGenerationKey {
|
||||
ak: ak.clone(),
|
||||
nsk: nsk.clone()
|
||||
};
|
||||
|
||||
let viewing_key = proof_generation_key.into_viewing_key(params);
|
||||
|
||||
let payment_address;
|
||||
|
||||
loop {
|
||||
let diversifier = ::primitives::Diversifier(rng.gen());
|
||||
|
||||
if let Some(p) = viewing_key.into_payment_address(
|
||||
diversifier,
|
||||
params
|
||||
)
|
||||
{
|
||||
payment_address = p;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
let commitment_randomness: fs::Fs = rng.gen();
|
||||
let esk: fs::Fs = rng.gen();
|
||||
|
||||
{
|
||||
let mut cs = TestConstraintSystem::<Bls12>::new();
|
||||
|
||||
let instance = Output {
|
||||
params: params,
|
||||
value_commitment: Some(value_commitment.clone()),
|
||||
payment_address: Some(payment_address.clone()),
|
||||
commitment_randomness: Some(commitment_randomness),
|
||||
esk: Some(esk.clone())
|
||||
};
|
||||
|
||||
instance.synthesize(&mut cs).unwrap();
|
||||
|
||||
assert!(cs.is_satisfied());
|
||||
assert_eq!(cs.num_constraints(), 7827);
|
||||
assert_eq!(cs.hash(), "c26d5cdfe6ccd65c03390902c02e11393ea6bb96aae32a7f2ecb12eb9103faee");
|
||||
|
||||
let expected_cm = payment_address.create_note(
|
||||
value_commitment.value,
|
||||
commitment_randomness,
|
||||
params
|
||||
).expect("should be valid").cm(params);
|
||||
|
||||
let expected_value_cm = value_commitment.cm(params).into_xy();
|
||||
|
||||
let expected_epk = payment_address.g_d(params).expect("should be valid").mul(esk, params);
|
||||
let expected_epk_xy = expected_epk.into_xy();
|
||||
|
||||
assert_eq!(cs.num_inputs(), 6);
|
||||
assert_eq!(cs.get_input(0, "ONE"), Fr::one());
|
||||
assert_eq!(cs.get_input(1, "value commitment/commitment point/x/input variable"), expected_value_cm.0);
|
||||
assert_eq!(cs.get_input(2, "value commitment/commitment point/y/input variable"), expected_value_cm.1);
|
||||
assert_eq!(cs.get_input(3, "epk/x/input variable"), expected_epk_xy.0);
|
||||
assert_eq!(cs.get_input(4, "epk/y/input variable"), expected_epk_xy.1);
|
||||
assert_eq!(cs.get_input(5, "commitment/input variable"), expected_cm);
|
||||
}
|
||||
}
|
||||
}
|
417
sapling-crypto/src/circuit/sha256.rs
Normal file
417
sapling-crypto/src/circuit/sha256.rs
Normal file
@@ -0,0 +1,417 @@
|
||||
use super::uint32::UInt32;
|
||||
use super::multieq::MultiEq;
|
||||
use super::boolean::Boolean;
|
||||
use bellman::{ConstraintSystem, SynthesisError};
|
||||
use pairing::Engine;
|
||||
|
||||
const ROUND_CONSTANTS: [u32; 64] = [
|
||||
0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5,
|
||||
0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3, 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174,
|
||||
0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc, 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
|
||||
0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967,
|
||||
0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13, 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85,
|
||||
0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3, 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
|
||||
0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3,
|
||||
0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208, 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2
|
||||
];
|
||||
|
||||
const IV: [u32; 8] = [
|
||||
0x6a09e667, 0xbb67ae85, 0x3c6ef372, 0xa54ff53a,
|
||||
0x510e527f, 0x9b05688c, 0x1f83d9ab, 0x5be0cd19
|
||||
];
|
||||
|
||||
pub fn sha256_block_no_padding<E, CS>(
|
||||
mut cs: CS,
|
||||
input: &[Boolean]
|
||||
) -> Result<Vec<Boolean>, SynthesisError>
|
||||
where E: Engine, CS: ConstraintSystem<E>
|
||||
{
|
||||
assert_eq!(input.len(), 512);
|
||||
|
||||
Ok(sha256_compression_function(
|
||||
&mut cs,
|
||||
&input,
|
||||
&get_sha256_iv()
|
||||
)?
|
||||
.into_iter()
|
||||
.flat_map(|e| e.into_bits_be())
|
||||
.collect())
|
||||
}
|
||||
|
||||
pub fn sha256<E, CS>(
|
||||
mut cs: CS,
|
||||
input: &[Boolean]
|
||||
) -> Result<Vec<Boolean>, SynthesisError>
|
||||
where E: Engine, CS: ConstraintSystem<E>
|
||||
{
|
||||
assert!(input.len() % 8 == 0);
|
||||
|
||||
let mut padded = input.to_vec();
|
||||
let plen = padded.len() as u64;
|
||||
// append a single '1' bit
|
||||
padded.push(Boolean::constant(true));
|
||||
// append K '0' bits, where K is the minimum number >= 0 such that L + 1 + K + 64 is a multiple of 512
|
||||
while (padded.len() + 64) % 512 != 0 {
|
||||
padded.push(Boolean::constant(false));
|
||||
}
|
||||
// append L as a 64-bit big-endian integer, making the total post-processed length a multiple of 512 bits
|
||||
for b in (0..64).rev().map(|i| (plen >> i) & 1 == 1) {
|
||||
padded.push(Boolean::constant(b));
|
||||
}
|
||||
assert!(padded.len() % 512 == 0);
|
||||
|
||||
let mut cur = get_sha256_iv();
|
||||
for (i, block) in padded.chunks(512).enumerate() {
|
||||
cur = sha256_compression_function(
|
||||
cs.namespace(|| format!("block {}", i)),
|
||||
block,
|
||||
&cur
|
||||
)?;
|
||||
}
|
||||
|
||||
Ok(cur.into_iter()
|
||||
.flat_map(|e| e.into_bits_be())
|
||||
.collect())
|
||||
}
|
||||
|
||||
fn get_sha256_iv() -> Vec<UInt32> {
|
||||
IV.iter().map(|&v| UInt32::constant(v)).collect()
|
||||
}
|
||||
|
||||
fn sha256_compression_function<E, CS>(
|
||||
cs: CS,
|
||||
input: &[Boolean],
|
||||
current_hash_value: &[UInt32]
|
||||
) -> Result<Vec<UInt32>, SynthesisError>
|
||||
where E: Engine, CS: ConstraintSystem<E>
|
||||
{
|
||||
assert_eq!(input.len(), 512);
|
||||
assert_eq!(current_hash_value.len(), 8);
|
||||
|
||||
let mut w = input.chunks(32)
|
||||
.map(|e| UInt32::from_bits_be(e))
|
||||
.collect::<Vec<_>>();
|
||||
|
||||
// We can save some constraints by combining some of
|
||||
// the constraints in different u32 additions
|
||||
let mut cs = MultiEq::new(cs);
|
||||
|
||||
for i in 16..64 {
|
||||
let cs = &mut cs.namespace(|| format!("w extension {}", i));
|
||||
|
||||
// s0 := (w[i-15] rightrotate 7) xor (w[i-15] rightrotate 18) xor (w[i-15] rightshift 3)
|
||||
let mut s0 = w[i-15].rotr(7);
|
||||
s0 = s0.xor(
|
||||
cs.namespace(|| "first xor for s0"),
|
||||
&w[i-15].rotr(18)
|
||||
)?;
|
||||
s0 = s0.xor(
|
||||
cs.namespace(|| "second xor for s0"),
|
||||
&w[i-15].shr(3)
|
||||
)?;
|
||||
|
||||
// s1 := (w[i-2] rightrotate 17) xor (w[i-2] rightrotate 19) xor (w[i-2] rightshift 10)
|
||||
let mut s1 = w[i-2].rotr(17);
|
||||
s1 = s1.xor(
|
||||
cs.namespace(|| "first xor for s1"),
|
||||
&w[i-2].rotr(19)
|
||||
)?;
|
||||
s1 = s1.xor(
|
||||
cs.namespace(|| "second xor for s1"),
|
||||
&w[i-2].shr(10)
|
||||
)?;
|
||||
|
||||
let tmp = UInt32::addmany(
|
||||
cs.namespace(|| "computation of w[i]"),
|
||||
&[w[i-16].clone(), s0, w[i-7].clone(), s1]
|
||||
)?;
|
||||
|
||||
// w[i] := w[i-16] + s0 + w[i-7] + s1
|
||||
w.push(tmp);
|
||||
}
|
||||
|
||||
assert_eq!(w.len(), 64);
|
||||
|
||||
enum Maybe {
|
||||
Deferred(Vec<UInt32>),
|
||||
Concrete(UInt32)
|
||||
}
|
||||
|
||||
impl Maybe {
|
||||
fn compute<E, CS, M>(
|
||||
self,
|
||||
cs: M,
|
||||
others: &[UInt32]
|
||||
) -> Result<UInt32, SynthesisError>
|
||||
where E: Engine,
|
||||
CS: ConstraintSystem<E>,
|
||||
M: ConstraintSystem<E, Root=MultiEq<E, CS>>
|
||||
{
|
||||
Ok(match self {
|
||||
Maybe::Concrete(ref v) => {
|
||||
return Ok(v.clone())
|
||||
},
|
||||
Maybe::Deferred(mut v) => {
|
||||
v.extend(others.into_iter().cloned());
|
||||
UInt32::addmany(
|
||||
cs,
|
||||
&v
|
||||
)?
|
||||
}
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
let mut a = Maybe::Concrete(current_hash_value[0].clone());
|
||||
let mut b = current_hash_value[1].clone();
|
||||
let mut c = current_hash_value[2].clone();
|
||||
let mut d = current_hash_value[3].clone();
|
||||
let mut e = Maybe::Concrete(current_hash_value[4].clone());
|
||||
let mut f = current_hash_value[5].clone();
|
||||
let mut g = current_hash_value[6].clone();
|
||||
let mut h = current_hash_value[7].clone();
|
||||
|
||||
for i in 0..64 {
|
||||
let cs = &mut cs.namespace(|| format!("compression round {}", i));
|
||||
|
||||
// S1 := (e rightrotate 6) xor (e rightrotate 11) xor (e rightrotate 25)
|
||||
let new_e = e.compute(cs.namespace(|| "deferred e computation"), &[])?;
|
||||
let mut s1 = new_e.rotr(6);
|
||||
s1 = s1.xor(
|
||||
cs.namespace(|| "first xor for s1"),
|
||||
&new_e.rotr(11)
|
||||
)?;
|
||||
s1 = s1.xor(
|
||||
cs.namespace(|| "second xor for s1"),
|
||||
&new_e.rotr(25)
|
||||
)?;
|
||||
|
||||
// ch := (e and f) xor ((not e) and g)
|
||||
let ch = UInt32::sha256_ch(
|
||||
cs.namespace(|| "ch"),
|
||||
&new_e,
|
||||
&f,
|
||||
&g
|
||||
)?;
|
||||
|
||||
// temp1 := h + S1 + ch + k[i] + w[i]
|
||||
let temp1 = vec![
|
||||
h.clone(),
|
||||
s1,
|
||||
ch,
|
||||
UInt32::constant(ROUND_CONSTANTS[i]),
|
||||
w[i].clone()
|
||||
];
|
||||
|
||||
// S0 := (a rightrotate 2) xor (a rightrotate 13) xor (a rightrotate 22)
|
||||
let new_a = a.compute(cs.namespace(|| "deferred a computation"), &[])?;
|
||||
let mut s0 = new_a.rotr(2);
|
||||
s0 = s0.xor(
|
||||
cs.namespace(|| "first xor for s0"),
|
||||
&new_a.rotr(13)
|
||||
)?;
|
||||
s0 = s0.xor(
|
||||
cs.namespace(|| "second xor for s0"),
|
||||
&new_a.rotr(22)
|
||||
)?;
|
||||
|
||||
// maj := (a and b) xor (a and c) xor (b and c)
|
||||
let maj = UInt32::sha256_maj(
|
||||
cs.namespace(|| "maj"),
|
||||
&new_a,
|
||||
&b,
|
||||
&c
|
||||
)?;
|
||||
|
||||
// temp2 := S0 + maj
|
||||
let temp2 = vec![s0, maj];
|
||||
|
||||
/*
|
||||
h := g
|
||||
g := f
|
||||
f := e
|
||||
e := d + temp1
|
||||
d := c
|
||||
c := b
|
||||
b := a
|
||||
a := temp1 + temp2
|
||||
*/
|
||||
|
||||
h = g;
|
||||
g = f;
|
||||
f = new_e;
|
||||
e = Maybe::Deferred(temp1.iter().cloned().chain(Some(d)).collect::<Vec<_>>());
|
||||
d = c;
|
||||
c = b;
|
||||
b = new_a;
|
||||
a = Maybe::Deferred(temp1.iter().cloned().chain(temp2.iter().cloned()).collect::<Vec<_>>());
|
||||
}
|
||||
|
||||
/*
|
||||
Add the compressed chunk to the current hash value:
|
||||
h0 := h0 + a
|
||||
h1 := h1 + b
|
||||
h2 := h2 + c
|
||||
h3 := h3 + d
|
||||
h4 := h4 + e
|
||||
h5 := h5 + f
|
||||
h6 := h6 + g
|
||||
h7 := h7 + h
|
||||
*/
|
||||
|
||||
let h0 = a.compute(
|
||||
cs.namespace(|| "deferred h0 computation"),
|
||||
&[current_hash_value[0].clone()]
|
||||
)?;
|
||||
|
||||
let h1 = UInt32::addmany(
|
||||
cs.namespace(|| "new h1"),
|
||||
&[current_hash_value[1].clone(), b]
|
||||
)?;
|
||||
|
||||
let h2 = UInt32::addmany(
|
||||
cs.namespace(|| "new h2"),
|
||||
&[current_hash_value[2].clone(), c]
|
||||
)?;
|
||||
|
||||
let h3 = UInt32::addmany(
|
||||
cs.namespace(|| "new h3"),
|
||||
&[current_hash_value[3].clone(), d]
|
||||
)?;
|
||||
|
||||
let h4 = e.compute(
|
||||
cs.namespace(|| "deferred h4 computation"),
|
||||
&[current_hash_value[4].clone()]
|
||||
)?;
|
||||
|
||||
let h5 = UInt32::addmany(
|
||||
cs.namespace(|| "new h5"),
|
||||
&[current_hash_value[5].clone(), f]
|
||||
)?;
|
||||
|
||||
let h6 = UInt32::addmany(
|
||||
cs.namespace(|| "new h6"),
|
||||
&[current_hash_value[6].clone(), g]
|
||||
)?;
|
||||
|
||||
let h7 = UInt32::addmany(
|
||||
cs.namespace(|| "new h7"),
|
||||
&[current_hash_value[7].clone(), h]
|
||||
)?;
|
||||
|
||||
Ok(vec![h0, h1, h2, h3, h4, h5, h6, h7])
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod test {
|
||||
use super::*;
|
||||
use circuit::boolean::AllocatedBit;
|
||||
use pairing::bls12_381::Bls12;
|
||||
use circuit::test::TestConstraintSystem;
|
||||
use rand::{XorShiftRng, SeedableRng, Rng};
|
||||
|
||||
#[test]
|
||||
fn test_blank_hash() {
|
||||
let iv = get_sha256_iv();
|
||||
|
||||
let mut cs = TestConstraintSystem::<Bls12>::new();
|
||||
let mut input_bits: Vec<_> = (0..512).map(|_| Boolean::Constant(false)).collect();
|
||||
input_bits[0] = Boolean::Constant(true);
|
||||
let out = sha256_compression_function(
|
||||
&mut cs,
|
||||
&input_bits,
|
||||
&iv
|
||||
).unwrap();
|
||||
let out_bits: Vec<_> = out.into_iter().flat_map(|e| e.into_bits_be()).collect();
|
||||
|
||||
assert!(cs.is_satisfied());
|
||||
assert_eq!(cs.num_constraints(), 0);
|
||||
|
||||
let expected = hex!("e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855");
|
||||
|
||||
let mut out = out_bits.into_iter();
|
||||
for b in expected.into_iter() {
|
||||
for i in (0..8).rev() {
|
||||
let c = out.next().unwrap().get_value().unwrap();
|
||||
|
||||
assert_eq!(c, (b >> i) & 1u8 == 1u8);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_full_block() {
|
||||
let mut rng = XorShiftRng::from_seed([0x5dbe6259, 0x8d313d76, 0x3237db17, 0xe5bc0654]);
|
||||
|
||||
let iv = get_sha256_iv();
|
||||
|
||||
let mut cs = TestConstraintSystem::<Bls12>::new();
|
||||
let input_bits: Vec<_> = (0..512).map(|i| {
|
||||
Boolean::from(
|
||||
AllocatedBit::alloc(
|
||||
cs.namespace(|| format!("input bit {}", i)),
|
||||
Some(rng.gen())
|
||||
).unwrap()
|
||||
)
|
||||
}).collect();
|
||||
|
||||
sha256_compression_function(
|
||||
cs.namespace(|| "sha256"),
|
||||
&input_bits,
|
||||
&iv
|
||||
).unwrap();
|
||||
|
||||
assert!(cs.is_satisfied());
|
||||
assert_eq!(cs.num_constraints() - 512, 25840);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_against_vectors() {
|
||||
use crypto::sha2::Sha256;
|
||||
use crypto::digest::Digest;
|
||||
|
||||
let mut rng = XorShiftRng::from_seed([0x5dbe6259, 0x8d313d76, 0x3237db17, 0xe5bc0654]);
|
||||
|
||||
for input_len in (0..32).chain((32..256).filter(|a| a % 8 == 0))
|
||||
{
|
||||
let mut h = Sha256::new();
|
||||
let data: Vec<u8> = (0..input_len).map(|_| rng.gen()).collect();
|
||||
h.input(&data);
|
||||
let mut hash_result = [0u8; 32];
|
||||
h.result(&mut hash_result[..]);
|
||||
|
||||
let mut cs = TestConstraintSystem::<Bls12>::new();
|
||||
let mut input_bits = vec![];
|
||||
|
||||
for (byte_i, input_byte) in data.into_iter().enumerate() {
|
||||
for bit_i in (0..8).rev() {
|
||||
let cs = cs.namespace(|| format!("input bit {} {}", byte_i, bit_i));
|
||||
|
||||
input_bits.push(AllocatedBit::alloc(cs, Some((input_byte >> bit_i) & 1u8 == 1u8)).unwrap().into());
|
||||
}
|
||||
}
|
||||
|
||||
let r = sha256(&mut cs, &input_bits).unwrap();
|
||||
|
||||
assert!(cs.is_satisfied());
|
||||
|
||||
let mut s = hash_result.as_ref().iter()
|
||||
.flat_map(|&byte| (0..8).rev().map(move |i| (byte >> i) & 1u8 == 1u8));
|
||||
|
||||
for b in r {
|
||||
match b {
|
||||
Boolean::Is(b) => {
|
||||
assert!(s.next().unwrap() == b.get_value().unwrap());
|
||||
},
|
||||
Boolean::Not(b) => {
|
||||
assert!(s.next().unwrap() != b.get_value().unwrap());
|
||||
},
|
||||
Boolean::Constant(b) => {
|
||||
assert!(input_len == 0);
|
||||
assert!(s.next().unwrap() == b);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
42
sapling-crypto/src/circuit/sprout/commitment.rs
Normal file
42
sapling-crypto/src/circuit/sprout/commitment.rs
Normal file
@@ -0,0 +1,42 @@
|
||||
use pairing::{Engine};
|
||||
use bellman::{ConstraintSystem, SynthesisError};
|
||||
use circuit::sha256::{
|
||||
sha256
|
||||
};
|
||||
use circuit::boolean::{
|
||||
Boolean
|
||||
};
|
||||
|
||||
pub fn note_comm<E, CS>(
|
||||
cs: CS,
|
||||
a_pk: &[Boolean],
|
||||
value: &[Boolean],
|
||||
rho: &[Boolean],
|
||||
r: &[Boolean]
|
||||
) -> Result<Vec<Boolean>, SynthesisError>
|
||||
where E: Engine, CS: ConstraintSystem<E>
|
||||
{
|
||||
assert_eq!(a_pk.len(), 256);
|
||||
assert_eq!(value.len(), 64);
|
||||
assert_eq!(rho.len(), 256);
|
||||
assert_eq!(r.len(), 256);
|
||||
|
||||
let mut image = vec![];
|
||||
image.push(Boolean::constant(true));
|
||||
image.push(Boolean::constant(false));
|
||||
image.push(Boolean::constant(true));
|
||||
image.push(Boolean::constant(true));
|
||||
image.push(Boolean::constant(false));
|
||||
image.push(Boolean::constant(false));
|
||||
image.push(Boolean::constant(false));
|
||||
image.push(Boolean::constant(false));
|
||||
image.extend(a_pk.iter().cloned());
|
||||
image.extend(value.iter().cloned());
|
||||
image.extend(rho.iter().cloned());
|
||||
image.extend(r.iter().cloned());
|
||||
|
||||
sha256(
|
||||
cs,
|
||||
&image
|
||||
)
|
||||
}
|
226
sapling-crypto/src/circuit/sprout/input.rs
Normal file
226
sapling-crypto/src/circuit/sprout/input.rs
Normal file
@@ -0,0 +1,226 @@
|
||||
use pairing::{Engine};
|
||||
use bellman::{ConstraintSystem, SynthesisError};
|
||||
use circuit::sha256::{
|
||||
sha256_block_no_padding
|
||||
};
|
||||
use circuit::boolean::{
|
||||
AllocatedBit,
|
||||
Boolean
|
||||
};
|
||||
|
||||
use super::*;
|
||||
use super::prfs::*;
|
||||
use super::commitment::note_comm;
|
||||
|
||||
pub struct InputNote {
|
||||
pub nf: Vec<Boolean>,
|
||||
pub mac: Vec<Boolean>,
|
||||
}
|
||||
|
||||
impl InputNote {
|
||||
pub fn compute<E, CS>(
|
||||
mut cs: CS,
|
||||
a_sk: Option<SpendingKey>,
|
||||
rho: Option<UniqueRandomness>,
|
||||
r: Option<CommitmentRandomness>,
|
||||
value: &NoteValue,
|
||||
h_sig: &[Boolean],
|
||||
nonce: bool,
|
||||
auth_path: [Option<([u8; 32], bool)>; TREE_DEPTH],
|
||||
rt: &[Boolean]
|
||||
) -> Result<InputNote, SynthesisError>
|
||||
where E: Engine, CS: ConstraintSystem<E>
|
||||
{
|
||||
let a_sk = witness_u252(
|
||||
cs.namespace(|| "a_sk"),
|
||||
a_sk.as_ref().map(|a_sk| &a_sk.0[..])
|
||||
)?;
|
||||
|
||||
let rho = witness_u256(
|
||||
cs.namespace(|| "rho"),
|
||||
rho.as_ref().map(|rho| &rho.0[..])
|
||||
)?;
|
||||
|
||||
let r = witness_u256(
|
||||
cs.namespace(|| "r"),
|
||||
r.as_ref().map(|r| &r.0[..])
|
||||
)?;
|
||||
|
||||
let a_pk = prf_a_pk(
|
||||
cs.namespace(|| "a_pk computation"),
|
||||
&a_sk
|
||||
)?;
|
||||
|
||||
let nf = prf_nf(
|
||||
cs.namespace(|| "nf computation"),
|
||||
&a_sk,
|
||||
&rho
|
||||
)?;
|
||||
|
||||
let mac = prf_pk(
|
||||
cs.namespace(|| "mac computation"),
|
||||
&a_sk,
|
||||
h_sig,
|
||||
nonce
|
||||
)?;
|
||||
|
||||
let cm = note_comm(
|
||||
cs.namespace(|| "cm computation"),
|
||||
&a_pk,
|
||||
&value.bits_le(),
|
||||
&rho,
|
||||
&r
|
||||
)?;
|
||||
|
||||
// Witness into the merkle tree
|
||||
let mut cur = cm.clone();
|
||||
|
||||
for (i, layer) in auth_path.into_iter().enumerate() {
|
||||
let cs = &mut cs.namespace(|| format!("layer {}", i));
|
||||
|
||||
let cur_is_right = AllocatedBit::alloc(
|
||||
cs.namespace(|| "cur is right"),
|
||||
layer.as_ref().map(|&(_, p)| p)
|
||||
)?;
|
||||
|
||||
let lhs = cur;
|
||||
let rhs = witness_u256(
|
||||
cs.namespace(|| "sibling"),
|
||||
layer.as_ref().map(|&(ref sibling, _)| &sibling[..])
|
||||
)?;
|
||||
|
||||
// Conditionally swap if cur is right
|
||||
let preimage = conditionally_swap_u256(
|
||||
cs.namespace(|| "conditional swap"),
|
||||
&lhs[..],
|
||||
&rhs[..],
|
||||
&cur_is_right
|
||||
)?;
|
||||
|
||||
cur = sha256_block_no_padding(
|
||||
cs.namespace(|| "hash of this layer"),
|
||||
&preimage
|
||||
)?;
|
||||
}
|
||||
|
||||
// enforce must be true if the value is nonzero
|
||||
let enforce = AllocatedBit::alloc(
|
||||
cs.namespace(|| "enforce"),
|
||||
value.get_value().map(|n| n != 0)
|
||||
)?;
|
||||
|
||||
// value * (1 - enforce) = 0
|
||||
// If `value` is zero, `enforce` _can_ be zero.
|
||||
// If `value` is nonzero, `enforce` _must_ be one.
|
||||
cs.enforce(
|
||||
|| "enforce validity",
|
||||
|_| value.lc(),
|
||||
|lc| lc + CS::one() - enforce.get_variable(),
|
||||
|lc| lc
|
||||
);
|
||||
|
||||
assert_eq!(cur.len(), rt.len());
|
||||
|
||||
// Check that the anchor (exposed as a public input)
|
||||
// is equal to the merkle tree root that we calculated
|
||||
// for this note
|
||||
for (i, (cur, rt)) in cur.into_iter().zip(rt.iter()).enumerate() {
|
||||
// (cur - rt) * enforce = 0
|
||||
// if enforce is zero, cur and rt can be different
|
||||
// if enforce is one, they must be equal
|
||||
cs.enforce(
|
||||
|| format!("conditionally enforce correct root for bit {}", i),
|
||||
|_| cur.lc(CS::one(), E::Fr::one()) - &rt.lc(CS::one(), E::Fr::one()),
|
||||
|lc| lc + enforce.get_variable(),
|
||||
|lc| lc
|
||||
);
|
||||
}
|
||||
|
||||
Ok(InputNote {
|
||||
mac: mac,
|
||||
nf: nf
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
/// Swaps two 256-bit blobs conditionally, returning the
|
||||
/// 512-bit concatenation.
|
||||
pub fn conditionally_swap_u256<E, CS>(
|
||||
mut cs: CS,
|
||||
lhs: &[Boolean],
|
||||
rhs: &[Boolean],
|
||||
condition: &AllocatedBit
|
||||
) -> Result<Vec<Boolean>, SynthesisError>
|
||||
where E: Engine, CS: ConstraintSystem<E>,
|
||||
{
|
||||
assert_eq!(lhs.len(), 256);
|
||||
assert_eq!(rhs.len(), 256);
|
||||
|
||||
let mut new_lhs = vec![];
|
||||
let mut new_rhs = vec![];
|
||||
|
||||
for (i, (lhs, rhs)) in lhs.iter().zip(rhs.iter()).enumerate() {
|
||||
let cs = &mut cs.namespace(|| format!("bit {}", i));
|
||||
|
||||
let x = Boolean::from(AllocatedBit::alloc(
|
||||
cs.namespace(|| "x"),
|
||||
condition.get_value().and_then(|v| {
|
||||
if v {
|
||||
rhs.get_value()
|
||||
} else {
|
||||
lhs.get_value()
|
||||
}
|
||||
})
|
||||
)?);
|
||||
|
||||
// x = (1-condition)lhs + (condition)rhs
|
||||
// x = lhs - lhs(condition) + rhs(condition)
|
||||
// x - lhs = condition (rhs - lhs)
|
||||
// if condition is zero, we don't swap, so
|
||||
// x - lhs = 0
|
||||
// x = lhs
|
||||
// if condition is one, we do swap, so
|
||||
// x - lhs = rhs - lhs
|
||||
// x = rhs
|
||||
cs.enforce(
|
||||
|| "conditional swap for x",
|
||||
|lc| lc + &rhs.lc(CS::one(), E::Fr::one())
|
||||
- &lhs.lc(CS::one(), E::Fr::one()),
|
||||
|lc| lc + condition.get_variable(),
|
||||
|lc| lc + &x.lc(CS::one(), E::Fr::one())
|
||||
- &lhs.lc(CS::one(), E::Fr::one())
|
||||
);
|
||||
|
||||
let y = Boolean::from(AllocatedBit::alloc(
|
||||
cs.namespace(|| "y"),
|
||||
condition.get_value().and_then(|v| {
|
||||
if v {
|
||||
lhs.get_value()
|
||||
} else {
|
||||
rhs.get_value()
|
||||
}
|
||||
})
|
||||
)?);
|
||||
|
||||
// y = (1-condition)rhs + (condition)lhs
|
||||
// y - rhs = condition (lhs - rhs)
|
||||
cs.enforce(
|
||||
|| "conditional swap for y",
|
||||
|lc| lc + &lhs.lc(CS::one(), E::Fr::one())
|
||||
- &rhs.lc(CS::one(), E::Fr::one()),
|
||||
|lc| lc + condition.get_variable(),
|
||||
|lc| lc + &y.lc(CS::one(), E::Fr::one())
|
||||
- &rhs.lc(CS::one(), E::Fr::one())
|
||||
);
|
||||
|
||||
new_lhs.push(x);
|
||||
new_rhs.push(y);
|
||||
}
|
||||
|
||||
let mut f = new_lhs;
|
||||
f.extend(new_rhs);
|
||||
|
||||
assert_eq!(f.len(), 512);
|
||||
|
||||
Ok(f)
|
||||
}
|
488
sapling-crypto/src/circuit/sprout/mod.rs
Normal file
488
sapling-crypto/src/circuit/sprout/mod.rs
Normal file
@@ -0,0 +1,488 @@
|
||||
use pairing::{Engine, Field};
|
||||
use bellman::{ConstraintSystem, SynthesisError, Circuit, LinearCombination};
|
||||
use circuit::boolean::{
|
||||
AllocatedBit,
|
||||
Boolean
|
||||
};
|
||||
use circuit::multipack::pack_into_inputs;
|
||||
|
||||
mod prfs;
|
||||
mod commitment;
|
||||
mod input;
|
||||
mod output;
|
||||
|
||||
use self::input::*;
|
||||
use self::output::*;
|
||||
|
||||
pub const TREE_DEPTH: usize = 29;
|
||||
|
||||
pub struct SpendingKey(pub [u8; 32]);
|
||||
pub struct PayingKey(pub [u8; 32]);
|
||||
pub struct UniqueRandomness(pub [u8; 32]);
|
||||
pub struct CommitmentRandomness(pub [u8; 32]);
|
||||
|
||||
pub struct JoinSplit {
|
||||
pub vpub_old: Option<u64>,
|
||||
pub vpub_new: Option<u64>,
|
||||
pub h_sig: Option<[u8; 32]>,
|
||||
pub phi: Option<[u8; 32]>,
|
||||
pub inputs: Vec<JSInput>,
|
||||
pub outputs: Vec<JSOutput>,
|
||||
pub rt: Option<[u8; 32]>,
|
||||
}
|
||||
|
||||
pub struct JSInput {
|
||||
pub value: Option<u64>,
|
||||
pub a_sk: Option<SpendingKey>,
|
||||
pub rho: Option<UniqueRandomness>,
|
||||
pub r: Option<CommitmentRandomness>,
|
||||
pub auth_path: [Option<([u8; 32], bool)>; TREE_DEPTH]
|
||||
}
|
||||
|
||||
pub struct JSOutput {
|
||||
pub value: Option<u64>,
|
||||
pub a_pk: Option<PayingKey>,
|
||||
pub r: Option<CommitmentRandomness>
|
||||
}
|
||||
|
||||
impl<E: Engine> Circuit<E> for JoinSplit {
|
||||
fn synthesize<CS: ConstraintSystem<E>>(
|
||||
self,
|
||||
cs: &mut CS
|
||||
) -> Result<(), SynthesisError>
|
||||
{
|
||||
assert_eq!(self.inputs.len(), 2);
|
||||
assert_eq!(self.outputs.len(), 2);
|
||||
|
||||
// vpub_old is the value entering the
|
||||
// JoinSplit from the "outside" value
|
||||
// pool
|
||||
let vpub_old = NoteValue::new(
|
||||
cs.namespace(|| "vpub_old"),
|
||||
self.vpub_old
|
||||
)?;
|
||||
|
||||
// vpub_new is the value leaving the
|
||||
// JoinSplit into the "outside" value
|
||||
// pool
|
||||
let vpub_new = NoteValue::new(
|
||||
cs.namespace(|| "vpub_new"),
|
||||
self.vpub_new
|
||||
)?;
|
||||
|
||||
// The left hand side of the balance equation
|
||||
// vpub_old + inputs[0].value + inputs[1].value
|
||||
let mut lhs = vpub_old.lc();
|
||||
|
||||
// The right hand side of the balance equation
|
||||
// vpub_old + inputs[0].value + inputs[1].value
|
||||
let mut rhs = vpub_new.lc();
|
||||
|
||||
// Witness rt (merkle tree root)
|
||||
let rt = witness_u256(
|
||||
cs.namespace(|| "rt"),
|
||||
self.rt.as_ref().map(|v| &v[..])
|
||||
).unwrap();
|
||||
|
||||
// Witness h_sig
|
||||
let h_sig = witness_u256(
|
||||
cs.namespace(|| "h_sig"),
|
||||
self.h_sig.as_ref().map(|v| &v[..])
|
||||
).unwrap();
|
||||
|
||||
// Witness phi
|
||||
let phi = witness_u252(
|
||||
cs.namespace(|| "phi"),
|
||||
self.phi.as_ref().map(|v| &v[..])
|
||||
).unwrap();
|
||||
|
||||
let mut input_notes = vec![];
|
||||
let mut lhs_total = self.vpub_old;
|
||||
|
||||
// Iterate over the JoinSplit inputs
|
||||
for (i, input) in self.inputs.into_iter().enumerate() {
|
||||
let cs = &mut cs.namespace(|| format!("input {}", i));
|
||||
|
||||
// Accumulate the value of the left hand side
|
||||
if let Some(value) = input.value {
|
||||
lhs_total = lhs_total.map(|v| v.wrapping_add(value));
|
||||
}
|
||||
|
||||
// Allocate the value of the note
|
||||
let value = NoteValue::new(
|
||||
cs.namespace(|| "value"),
|
||||
input.value
|
||||
)?;
|
||||
|
||||
// Compute the nonce (for PRF inputs) which is false
|
||||
// for the first input, and true for the second input.
|
||||
let nonce = match i {
|
||||
0 => false,
|
||||
1 => true,
|
||||
_ => unreachable!()
|
||||
};
|
||||
|
||||
// Perform input note computations
|
||||
input_notes.push(InputNote::compute(
|
||||
cs.namespace(|| "note"),
|
||||
input.a_sk,
|
||||
input.rho,
|
||||
input.r,
|
||||
&value,
|
||||
&h_sig,
|
||||
nonce,
|
||||
input.auth_path,
|
||||
&rt
|
||||
)?);
|
||||
|
||||
// Add the note value to the left hand side of
|
||||
// the balance equation
|
||||
lhs = lhs + &value.lc();
|
||||
}
|
||||
|
||||
// Rebind lhs so that it isn't mutable anymore
|
||||
let lhs = lhs;
|
||||
|
||||
// See zcash/zcash/issues/854
|
||||
{
|
||||
// Expected sum of the left hand side of the balance
|
||||
// equation, expressed as a 64-bit unsigned integer
|
||||
let lhs_total = NoteValue::new(
|
||||
cs.namespace(|| "total value of left hand side"),
|
||||
lhs_total
|
||||
)?;
|
||||
|
||||
// Enforce that the left hand side can be expressed as a 64-bit
|
||||
// integer
|
||||
cs.enforce(
|
||||
|| "left hand side can be expressed as a 64-bit unsigned integer",
|
||||
|_| lhs.clone(),
|
||||
|lc| lc + CS::one(),
|
||||
|_| lhs_total.lc()
|
||||
);
|
||||
}
|
||||
|
||||
let mut output_notes = vec![];
|
||||
|
||||
// Iterate over the JoinSplit outputs
|
||||
for (i, output) in self.outputs.into_iter().enumerate() {
|
||||
let cs = &mut cs.namespace(|| format!("output {}", i));
|
||||
|
||||
let value = NoteValue::new(
|
||||
cs.namespace(|| "value"),
|
||||
output.value
|
||||
)?;
|
||||
|
||||
// Compute the nonce (for PRF inputs) which is false
|
||||
// for the first output, and true for the second output.
|
||||
let nonce = match i {
|
||||
0 => false,
|
||||
1 => true,
|
||||
_ => unreachable!()
|
||||
};
|
||||
|
||||
// Perform output note computations
|
||||
output_notes.push(OutputNote::compute(
|
||||
cs.namespace(|| "note"),
|
||||
output.a_pk,
|
||||
&value,
|
||||
output.r,
|
||||
&phi,
|
||||
&h_sig,
|
||||
nonce
|
||||
)?);
|
||||
|
||||
// Add the note value to the right hand side of
|
||||
// the balance equation
|
||||
rhs = rhs + &value.lc();
|
||||
}
|
||||
|
||||
// Enforce that balance is equal
|
||||
cs.enforce(
|
||||
|| "balance equation",
|
||||
|_| lhs.clone(),
|
||||
|lc| lc + CS::one(),
|
||||
|_| rhs
|
||||
);
|
||||
|
||||
let mut public_inputs = vec![];
|
||||
public_inputs.extend(rt);
|
||||
public_inputs.extend(h_sig);
|
||||
|
||||
for note in input_notes {
|
||||
public_inputs.extend(note.nf);
|
||||
public_inputs.extend(note.mac);
|
||||
}
|
||||
|
||||
for note in output_notes {
|
||||
public_inputs.extend(note.cm);
|
||||
}
|
||||
|
||||
public_inputs.extend(vpub_old.bits_le());
|
||||
public_inputs.extend(vpub_new.bits_le());
|
||||
|
||||
pack_into_inputs(cs.namespace(|| "input packing"), &public_inputs)
|
||||
}
|
||||
}
|
||||
|
||||
pub struct NoteValue {
|
||||
value: Option<u64>,
|
||||
// Least significant digit first
|
||||
bits: Vec<AllocatedBit>
|
||||
}
|
||||
|
||||
impl NoteValue {
|
||||
fn new<E, CS>(
|
||||
mut cs: CS,
|
||||
value: Option<u64>
|
||||
) -> Result<NoteValue, SynthesisError>
|
||||
where E: Engine, CS: ConstraintSystem<E>,
|
||||
{
|
||||
let mut values;
|
||||
match value {
|
||||
Some(mut val) => {
|
||||
values = vec![];
|
||||
for _ in 0..64 {
|
||||
values.push(Some(val & 1 == 1));
|
||||
val >>= 1;
|
||||
}
|
||||
},
|
||||
None => {
|
||||
values = vec![None; 64];
|
||||
}
|
||||
}
|
||||
|
||||
let mut bits = vec![];
|
||||
for (i, value) in values.into_iter().enumerate() {
|
||||
bits.push(
|
||||
AllocatedBit::alloc(
|
||||
cs.namespace(|| format!("bit {}", i)),
|
||||
value
|
||||
)?
|
||||
);
|
||||
}
|
||||
|
||||
Ok(NoteValue {
|
||||
value: value,
|
||||
bits: bits
|
||||
})
|
||||
}
|
||||
|
||||
/// Encodes the bits of the value into little-endian
|
||||
/// byte order.
|
||||
fn bits_le(&self) -> Vec<Boolean> {
|
||||
self.bits.chunks(8)
|
||||
.flat_map(|v| v.iter().rev())
|
||||
.cloned()
|
||||
.map(|e| Boolean::from(e))
|
||||
.collect()
|
||||
}
|
||||
|
||||
/// Computes this value as a linear combination of
|
||||
/// its bits.
|
||||
fn lc<E: Engine>(&self) -> LinearCombination<E> {
|
||||
let mut tmp = LinearCombination::zero();
|
||||
|
||||
let mut coeff = E::Fr::one();
|
||||
for b in &self.bits {
|
||||
tmp = tmp + (coeff, b.get_variable());
|
||||
coeff.double();
|
||||
}
|
||||
|
||||
tmp
|
||||
}
|
||||
|
||||
fn get_value(&self) -> Option<u64> {
|
||||
self.value
|
||||
}
|
||||
}
|
||||
|
||||
/// Witnesses some bytes in the constraint system,
|
||||
/// skipping the first `skip_bits`.
|
||||
fn witness_bits<E, CS>(
|
||||
mut cs: CS,
|
||||
value: Option<&[u8]>,
|
||||
num_bits: usize,
|
||||
skip_bits: usize
|
||||
) -> Result<Vec<Boolean>, SynthesisError>
|
||||
where E: Engine, CS: ConstraintSystem<E>,
|
||||
{
|
||||
let bit_values = if let Some(value) = value {
|
||||
let mut tmp = vec![];
|
||||
for b in value.iter()
|
||||
.flat_map(|&m| (0..8).rev().map(move |i| m >> i & 1 == 1))
|
||||
.skip(skip_bits)
|
||||
{
|
||||
tmp.push(Some(b));
|
||||
}
|
||||
tmp
|
||||
} else {
|
||||
vec![None; num_bits]
|
||||
};
|
||||
assert_eq!(bit_values.len(), num_bits);
|
||||
|
||||
let mut bits = vec![];
|
||||
|
||||
for (i, value) in bit_values.into_iter().enumerate() {
|
||||
bits.push(Boolean::from(AllocatedBit::alloc(
|
||||
cs.namespace(|| format!("bit {}", i)),
|
||||
value
|
||||
)?));
|
||||
}
|
||||
|
||||
Ok(bits)
|
||||
}
|
||||
|
||||
fn witness_u256<E, CS>(
|
||||
cs: CS,
|
||||
value: Option<&[u8]>,
|
||||
) -> Result<Vec<Boolean>, SynthesisError>
|
||||
where E: Engine, CS: ConstraintSystem<E>,
|
||||
{
|
||||
witness_bits(cs, value, 256, 0)
|
||||
}
|
||||
|
||||
fn witness_u252<E, CS>(
|
||||
cs: CS,
|
||||
value: Option<&[u8]>,
|
||||
) -> Result<Vec<Boolean>, SynthesisError>
|
||||
where E: Engine, CS: ConstraintSystem<E>,
|
||||
{
|
||||
witness_bits(cs, value, 252, 4)
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_sprout_constraints() {
|
||||
use pairing::bls12_381::{Bls12};
|
||||
use ::circuit::test::*;
|
||||
|
||||
use byteorder::{WriteBytesExt, ReadBytesExt, LittleEndian};
|
||||
|
||||
let test_vector = include_bytes!("test_vectors.dat");
|
||||
let mut test_vector = &test_vector[..];
|
||||
|
||||
fn get_u256<R: ReadBytesExt>(mut reader: R) -> [u8; 32] {
|
||||
let mut result = [0u8; 32];
|
||||
|
||||
for i in 0..32 {
|
||||
result[i] = reader.read_u8().unwrap();
|
||||
}
|
||||
|
||||
result
|
||||
}
|
||||
|
||||
while test_vector.len() != 0 {
|
||||
let mut cs = TestConstraintSystem::<Bls12>::new();
|
||||
|
||||
let phi = Some(get_u256(&mut test_vector));
|
||||
let rt = Some(get_u256(&mut test_vector));
|
||||
let h_sig = Some(get_u256(&mut test_vector));
|
||||
|
||||
let mut inputs = vec![];
|
||||
for _ in 0..2 {
|
||||
test_vector.read_u8().unwrap();
|
||||
|
||||
let mut auth_path = [None; TREE_DEPTH];
|
||||
for i in (0..TREE_DEPTH).rev() {
|
||||
test_vector.read_u8().unwrap();
|
||||
|
||||
let sibling = get_u256(&mut test_vector);
|
||||
|
||||
auth_path[i] = Some((sibling, false));
|
||||
}
|
||||
let mut position = test_vector.read_u64::<LittleEndian>().unwrap();
|
||||
for i in 0..TREE_DEPTH {
|
||||
auth_path[i].as_mut().map(|p| {
|
||||
p.1 = (position & 1) == 1
|
||||
});
|
||||
|
||||
position >>= 1;
|
||||
}
|
||||
|
||||
// a_pk
|
||||
let _ = Some(SpendingKey(get_u256(&mut test_vector)));
|
||||
let value = Some(test_vector.read_u64::<LittleEndian>().unwrap());
|
||||
let rho = Some(UniqueRandomness(get_u256(&mut test_vector)));
|
||||
let r = Some(CommitmentRandomness(get_u256(&mut test_vector)));
|
||||
let a_sk = Some(SpendingKey(get_u256(&mut test_vector)));
|
||||
|
||||
inputs.push(
|
||||
JSInput {
|
||||
value: value,
|
||||
a_sk: a_sk,
|
||||
rho: rho,
|
||||
r: r,
|
||||
auth_path: auth_path
|
||||
}
|
||||
);
|
||||
}
|
||||
|
||||
let mut outputs = vec![];
|
||||
|
||||
for _ in 0..2 {
|
||||
let a_pk = Some(PayingKey(get_u256(&mut test_vector)));
|
||||
let value = Some(test_vector.read_u64::<LittleEndian>().unwrap());
|
||||
get_u256(&mut test_vector);
|
||||
let r = Some(CommitmentRandomness(get_u256(&mut test_vector)));
|
||||
|
||||
outputs.push(
|
||||
JSOutput {
|
||||
value: value,
|
||||
a_pk: a_pk,
|
||||
r: r
|
||||
}
|
||||
);
|
||||
}
|
||||
|
||||
let vpub_old = Some(test_vector.read_u64::<LittleEndian>().unwrap());
|
||||
let vpub_new = Some(test_vector.read_u64::<LittleEndian>().unwrap());
|
||||
|
||||
let nf1 = get_u256(&mut test_vector);
|
||||
let nf2 = get_u256(&mut test_vector);
|
||||
|
||||
let cm1 = get_u256(&mut test_vector);
|
||||
let cm2 = get_u256(&mut test_vector);
|
||||
|
||||
let mac1 = get_u256(&mut test_vector);
|
||||
let mac2 = get_u256(&mut test_vector);
|
||||
|
||||
let js = JoinSplit {
|
||||
vpub_old: vpub_old,
|
||||
vpub_new: vpub_new,
|
||||
h_sig: h_sig,
|
||||
phi: phi,
|
||||
inputs: inputs,
|
||||
outputs: outputs,
|
||||
rt: rt
|
||||
};
|
||||
|
||||
js.synthesize(&mut cs).unwrap();
|
||||
|
||||
if let Some(s) = cs.which_is_unsatisfied() {
|
||||
panic!("{:?}", s);
|
||||
}
|
||||
assert!(cs.is_satisfied());
|
||||
assert_eq!(cs.num_constraints(), 1989085);
|
||||
assert_eq!(cs.num_inputs(), 10);
|
||||
assert_eq!(cs.hash(), "1a228d3c6377130d1778c7885811dc8b8864049cb5af8aff7e6cd46c5bc4b84c");
|
||||
|
||||
let mut expected_inputs = vec![];
|
||||
expected_inputs.extend(rt.unwrap().to_vec());
|
||||
expected_inputs.extend(h_sig.unwrap().to_vec());
|
||||
expected_inputs.extend(nf1.to_vec());
|
||||
expected_inputs.extend(mac1.to_vec());
|
||||
expected_inputs.extend(nf2.to_vec());
|
||||
expected_inputs.extend(mac2.to_vec());
|
||||
expected_inputs.extend(cm1.to_vec());
|
||||
expected_inputs.extend(cm2.to_vec());
|
||||
expected_inputs.write_u64::<LittleEndian>(vpub_old.unwrap()).unwrap();
|
||||
expected_inputs.write_u64::<LittleEndian>(vpub_new.unwrap()).unwrap();
|
||||
|
||||
use circuit::multipack;
|
||||
|
||||
let expected_inputs = multipack::bytes_to_bits(&expected_inputs);
|
||||
let expected_inputs = multipack::compute_multipacking::<Bls12>(&expected_inputs);
|
||||
|
||||
assert!(cs.verify(&expected_inputs));
|
||||
}
|
||||
}
|
54
sapling-crypto/src/circuit/sprout/output.rs
Normal file
54
sapling-crypto/src/circuit/sprout/output.rs
Normal file
@@ -0,0 +1,54 @@
|
||||
use pairing::{Engine};
|
||||
use bellman::{ConstraintSystem, SynthesisError};
|
||||
use circuit::boolean::{Boolean};
|
||||
|
||||
use super::*;
|
||||
use super::prfs::*;
|
||||
use super::commitment::note_comm;
|
||||
|
||||
pub struct OutputNote {
|
||||
pub cm: Vec<Boolean>
|
||||
}
|
||||
|
||||
impl OutputNote {
|
||||
pub fn compute<'a, E, CS>(
|
||||
mut cs: CS,
|
||||
a_pk: Option<PayingKey>,
|
||||
value: &NoteValue,
|
||||
r: Option<CommitmentRandomness>,
|
||||
phi: &[Boolean],
|
||||
h_sig: &[Boolean],
|
||||
nonce: bool
|
||||
) -> Result<Self, SynthesisError>
|
||||
where E: Engine, CS: ConstraintSystem<E>,
|
||||
{
|
||||
let rho = prf_rho(
|
||||
cs.namespace(|| "rho"),
|
||||
phi,
|
||||
h_sig,
|
||||
nonce
|
||||
)?;
|
||||
|
||||
let a_pk = witness_u256(
|
||||
cs.namespace(|| "a_pk"),
|
||||
a_pk.as_ref().map(|a_pk| &a_pk.0[..])
|
||||
)?;
|
||||
|
||||
let r = witness_u256(
|
||||
cs.namespace(|| "r"),
|
||||
r.as_ref().map(|r| &r.0[..])
|
||||
)?;
|
||||
|
||||
let cm = note_comm(
|
||||
cs.namespace(|| "cm computation"),
|
||||
&a_pk,
|
||||
&value.bits_le(),
|
||||
&rho,
|
||||
&r
|
||||
)?;
|
||||
|
||||
Ok(OutputNote {
|
||||
cm: cm
|
||||
})
|
||||
}
|
||||
}
|
79
sapling-crypto/src/circuit/sprout/prfs.rs
Normal file
79
sapling-crypto/src/circuit/sprout/prfs.rs
Normal file
@@ -0,0 +1,79 @@
|
||||
use pairing::{Engine};
|
||||
use bellman::{ConstraintSystem, SynthesisError};
|
||||
use circuit::sha256::{
|
||||
sha256_block_no_padding
|
||||
};
|
||||
use circuit::boolean::{
|
||||
Boolean
|
||||
};
|
||||
|
||||
fn prf<E, CS>(
|
||||
cs: CS,
|
||||
a: bool,
|
||||
b: bool,
|
||||
c: bool,
|
||||
d: bool,
|
||||
x: &[Boolean],
|
||||
y: &[Boolean]
|
||||
) -> Result<Vec<Boolean>, SynthesisError>
|
||||
where E: Engine, CS: ConstraintSystem<E>
|
||||
{
|
||||
assert_eq!(x.len(), 252);
|
||||
assert_eq!(y.len(), 256);
|
||||
|
||||
let mut image = vec![];
|
||||
image.push(Boolean::constant(a));
|
||||
image.push(Boolean::constant(b));
|
||||
image.push(Boolean::constant(c));
|
||||
image.push(Boolean::constant(d));
|
||||
image.extend(x.iter().cloned());
|
||||
image.extend(y.iter().cloned());
|
||||
|
||||
assert_eq!(image.len(), 512);
|
||||
|
||||
sha256_block_no_padding(
|
||||
cs,
|
||||
&image
|
||||
)
|
||||
}
|
||||
|
||||
pub fn prf_a_pk<E, CS>(
|
||||
cs: CS,
|
||||
a_sk: &[Boolean]
|
||||
) -> Result<Vec<Boolean>, SynthesisError>
|
||||
where E: Engine, CS: ConstraintSystem<E>
|
||||
{
|
||||
prf(cs, true, true, false, false, a_sk, &(0..256).map(|_| Boolean::constant(false)).collect::<Vec<_>>())
|
||||
}
|
||||
|
||||
pub fn prf_nf<E, CS>(
|
||||
cs: CS,
|
||||
a_sk: &[Boolean],
|
||||
rho: &[Boolean]
|
||||
) -> Result<Vec<Boolean>, SynthesisError>
|
||||
where E: Engine, CS: ConstraintSystem<E>
|
||||
{
|
||||
prf(cs, true, true, true, false, a_sk, rho)
|
||||
}
|
||||
|
||||
pub fn prf_pk<E, CS>(
|
||||
cs: CS,
|
||||
a_sk: &[Boolean],
|
||||
h_sig: &[Boolean],
|
||||
nonce: bool
|
||||
) -> Result<Vec<Boolean>, SynthesisError>
|
||||
where E: Engine, CS: ConstraintSystem<E>
|
||||
{
|
||||
prf(cs, false, nonce, false, false, a_sk, h_sig)
|
||||
}
|
||||
|
||||
pub fn prf_rho<E, CS>(
|
||||
cs: CS,
|
||||
phi: &[Boolean],
|
||||
h_sig: &[Boolean],
|
||||
nonce: bool
|
||||
) -> Result<Vec<Boolean>, SynthesisError>
|
||||
where E: Engine, CS: ConstraintSystem<E>
|
||||
{
|
||||
prf(cs, false, nonce, true, false, phi, h_sig)
|
||||
}
|
BIN
sapling-crypto/src/circuit/sprout/test_vectors.dat
Normal file
BIN
sapling-crypto/src/circuit/sprout/test_vectors.dat
Normal file
Binary file not shown.
492
sapling-crypto/src/circuit/test/mod.rs
Normal file
492
sapling-crypto/src/circuit/test/mod.rs
Normal file
@@ -0,0 +1,492 @@
|
||||
use pairing::{
|
||||
Engine,
|
||||
Field,
|
||||
PrimeField,
|
||||
PrimeFieldRepr
|
||||
};
|
||||
|
||||
use bellman::{
|
||||
LinearCombination,
|
||||
SynthesisError,
|
||||
ConstraintSystem,
|
||||
Variable,
|
||||
Index
|
||||
};
|
||||
|
||||
use std::collections::HashMap;
|
||||
use std::fmt::Write;
|
||||
|
||||
use byteorder::{BigEndian, ByteOrder};
|
||||
use std::cmp::Ordering;
|
||||
use std::collections::BTreeMap;
|
||||
|
||||
use blake2_rfc::blake2s::Blake2s;
|
||||
|
||||
#[derive(Debug)]
|
||||
enum NamedObject {
|
||||
Constraint(usize),
|
||||
Var(Variable),
|
||||
Namespace
|
||||
}
|
||||
|
||||
/// Constraint system for testing purposes.
|
||||
pub struct TestConstraintSystem<E: Engine> {
|
||||
named_objects: HashMap<String, NamedObject>,
|
||||
current_namespace: Vec<String>,
|
||||
constraints: Vec<(
|
||||
LinearCombination<E>,
|
||||
LinearCombination<E>,
|
||||
LinearCombination<E>,
|
||||
String
|
||||
)>,
|
||||
inputs: Vec<(E::Fr, String)>,
|
||||
aux: Vec<(E::Fr, String)>
|
||||
}
|
||||
|
||||
#[derive(Clone, Copy)]
|
||||
struct OrderedVariable(Variable);
|
||||
|
||||
impl Eq for OrderedVariable {}
|
||||
impl PartialEq for OrderedVariable {
|
||||
fn eq(&self, other: &OrderedVariable) -> bool {
|
||||
match (self.0.get_unchecked(), other.0.get_unchecked()) {
|
||||
(Index::Input(ref a), Index::Input(ref b)) => a == b,
|
||||
(Index::Aux(ref a), Index::Aux(ref b)) => a == b,
|
||||
_ => false
|
||||
}
|
||||
}
|
||||
}
|
||||
impl PartialOrd for OrderedVariable {
|
||||
fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
|
||||
Some(self.cmp(other))
|
||||
}
|
||||
}
|
||||
impl Ord for OrderedVariable {
|
||||
fn cmp(&self, other: &Self) -> Ordering {
|
||||
match (self.0.get_unchecked(), other.0.get_unchecked()) {
|
||||
(Index::Input(ref a), Index::Input(ref b)) => a.cmp(b),
|
||||
(Index::Aux(ref a), Index::Aux(ref b)) => a.cmp(b),
|
||||
(Index::Input(_), Index::Aux(_)) => Ordering::Less,
|
||||
(Index::Aux(_), Index::Input(_)) => Ordering::Greater
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn proc_lc<E: Engine>(
|
||||
terms: &[(Variable, E::Fr)],
|
||||
) -> BTreeMap<OrderedVariable, E::Fr>
|
||||
{
|
||||
let mut map = BTreeMap::new();
|
||||
for &(var, coeff) in terms {
|
||||
map.entry(OrderedVariable(var))
|
||||
.or_insert(E::Fr::zero())
|
||||
.add_assign(&coeff);
|
||||
}
|
||||
|
||||
// Remove terms that have a zero coefficient to normalize
|
||||
let mut to_remove = vec![];
|
||||
for (var, coeff) in map.iter() {
|
||||
if coeff.is_zero() {
|
||||
to_remove.push(var.clone())
|
||||
}
|
||||
}
|
||||
|
||||
for var in to_remove {
|
||||
map.remove(&var);
|
||||
}
|
||||
|
||||
map
|
||||
}
|
||||
|
||||
fn hash_lc<E: Engine>(
|
||||
terms: &[(Variable, E::Fr)],
|
||||
h: &mut Blake2s
|
||||
)
|
||||
{
|
||||
let map = proc_lc::<E>(terms);
|
||||
|
||||
let mut buf = [0u8; 9 + 32];
|
||||
BigEndian::write_u64(&mut buf[0..8], map.len() as u64);
|
||||
h.update(&buf[0..8]);
|
||||
|
||||
for (var, coeff) in map {
|
||||
match var.0.get_unchecked() {
|
||||
Index::Input(i) => {
|
||||
buf[0] = b'I';
|
||||
BigEndian::write_u64(&mut buf[1..9], i as u64);
|
||||
},
|
||||
Index::Aux(i) => {
|
||||
buf[0] = b'A';
|
||||
BigEndian::write_u64(&mut buf[1..9], i as u64);
|
||||
}
|
||||
}
|
||||
|
||||
coeff.into_repr().write_be(&mut buf[9..]).unwrap();
|
||||
|
||||
h.update(&buf);
|
||||
}
|
||||
}
|
||||
|
||||
fn eval_lc<E: Engine>(
|
||||
terms: &[(Variable, E::Fr)],
|
||||
inputs: &[(E::Fr, String)],
|
||||
aux: &[(E::Fr, String)]
|
||||
) -> E::Fr
|
||||
{
|
||||
let mut acc = E::Fr::zero();
|
||||
|
||||
for &(var, ref coeff) in terms {
|
||||
let mut tmp = match var.get_unchecked() {
|
||||
Index::Input(index) => inputs[index].0,
|
||||
Index::Aux(index) => aux[index].0
|
||||
};
|
||||
|
||||
tmp.mul_assign(&coeff);
|
||||
acc.add_assign(&tmp);
|
||||
}
|
||||
|
||||
acc
|
||||
}
|
||||
|
||||
impl<E: Engine> TestConstraintSystem<E> {
|
||||
pub fn new() -> TestConstraintSystem<E> {
|
||||
let mut map = HashMap::new();
|
||||
map.insert("ONE".into(), NamedObject::Var(TestConstraintSystem::<E>::one()));
|
||||
|
||||
TestConstraintSystem {
|
||||
named_objects: map,
|
||||
current_namespace: vec![],
|
||||
constraints: vec![],
|
||||
inputs: vec![(E::Fr::one(), "ONE".into())],
|
||||
aux: vec![]
|
||||
}
|
||||
}
|
||||
|
||||
pub fn pretty_print(&self) -> String {
|
||||
let mut s = String::new();
|
||||
|
||||
let negone = {
|
||||
let mut tmp = E::Fr::one();
|
||||
tmp.negate();
|
||||
tmp
|
||||
};
|
||||
|
||||
let powers_of_two = (0..E::Fr::NUM_BITS).map(|i| {
|
||||
E::Fr::from_str("2").unwrap().pow(&[i as u64])
|
||||
}).collect::<Vec<_>>();
|
||||
|
||||
let pp = |s: &mut String, lc: &LinearCombination<E>| {
|
||||
write!(s, "(").unwrap();
|
||||
let mut is_first = true;
|
||||
for (var, coeff) in proc_lc::<E>(lc.as_ref()) {
|
||||
if coeff == negone {
|
||||
write!(s, " - ").unwrap();
|
||||
} else if !is_first {
|
||||
write!(s, " + ").unwrap();
|
||||
}
|
||||
is_first = false;
|
||||
|
||||
if coeff != E::Fr::one() && coeff != negone {
|
||||
for (i, x) in powers_of_two.iter().enumerate() {
|
||||
if x == &coeff {
|
||||
write!(s, "2^{} . ", i).unwrap();
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
write!(s, "{} . ", coeff).unwrap();
|
||||
}
|
||||
|
||||
match var.0.get_unchecked() {
|
||||
Index::Input(i) => {
|
||||
write!(s, "`{}`", &self.inputs[i].1).unwrap();
|
||||
},
|
||||
Index::Aux(i) => {
|
||||
write!(s, "`{}`", &self.aux[i].1).unwrap();
|
||||
}
|
||||
}
|
||||
}
|
||||
if is_first {
|
||||
// Nothing was visited, print 0.
|
||||
write!(s, "0").unwrap();
|
||||
}
|
||||
write!(s, ")").unwrap();
|
||||
};
|
||||
|
||||
for &(ref a, ref b, ref c, ref name) in &self.constraints {
|
||||
write!(&mut s, "\n").unwrap();
|
||||
|
||||
write!(&mut s, "{}: ", name).unwrap();
|
||||
pp(&mut s, a);
|
||||
write!(&mut s, " * ").unwrap();
|
||||
pp(&mut s, b);
|
||||
write!(&mut s, " = ").unwrap();
|
||||
pp(&mut s, c);
|
||||
}
|
||||
|
||||
write!(&mut s, "\n").unwrap();
|
||||
|
||||
s
|
||||
}
|
||||
|
||||
pub fn hash(&self) -> String {
|
||||
let mut h = Blake2s::new(32);
|
||||
{
|
||||
let mut buf = [0u8; 24];
|
||||
|
||||
BigEndian::write_u64(&mut buf[0..8], self.inputs.len() as u64);
|
||||
BigEndian::write_u64(&mut buf[8..16], self.aux.len() as u64);
|
||||
BigEndian::write_u64(&mut buf[16..24], self.constraints.len() as u64);
|
||||
h.update(&buf);
|
||||
}
|
||||
|
||||
for constraint in &self.constraints {
|
||||
hash_lc::<E>(constraint.0.as_ref(), &mut h);
|
||||
hash_lc::<E>(constraint.1.as_ref(), &mut h);
|
||||
hash_lc::<E>(constraint.2.as_ref(), &mut h);
|
||||
}
|
||||
|
||||
let mut s = String::new();
|
||||
for b in h.finalize().as_ref() {
|
||||
s += &format!("{:02x}", b);
|
||||
}
|
||||
|
||||
s
|
||||
}
|
||||
|
||||
pub fn which_is_unsatisfied(&self) -> Option<&str> {
|
||||
for &(ref a, ref b, ref c, ref path) in &self.constraints {
|
||||
let mut a = eval_lc::<E>(a.as_ref(), &self.inputs, &self.aux);
|
||||
let b = eval_lc::<E>(b.as_ref(), &self.inputs, &self.aux);
|
||||
let c = eval_lc::<E>(c.as_ref(), &self.inputs, &self.aux);
|
||||
|
||||
a.mul_assign(&b);
|
||||
|
||||
if a != c {
|
||||
return Some(&*path)
|
||||
}
|
||||
}
|
||||
|
||||
None
|
||||
}
|
||||
|
||||
pub fn is_satisfied(&self) -> bool
|
||||
{
|
||||
self.which_is_unsatisfied().is_none()
|
||||
}
|
||||
|
||||
pub fn num_constraints(&self) -> usize
|
||||
{
|
||||
self.constraints.len()
|
||||
}
|
||||
|
||||
pub fn set(&mut self, path: &str, to: E::Fr)
|
||||
{
|
||||
match self.named_objects.get(path) {
|
||||
Some(&NamedObject::Var(ref v)) => {
|
||||
match v.get_unchecked() {
|
||||
Index::Input(index) => self.inputs[index].0 = to,
|
||||
Index::Aux(index) => self.aux[index].0 = to
|
||||
}
|
||||
}
|
||||
Some(e) => panic!("tried to set path `{}` to value, but `{:?}` already exists there.", path, e),
|
||||
_ => panic!("no variable exists at path: {}", path)
|
||||
}
|
||||
}
|
||||
|
||||
pub fn verify(&self, expected: &[E::Fr]) -> bool
|
||||
{
|
||||
assert_eq!(expected.len() + 1, self.inputs.len());
|
||||
|
||||
for (a, b) in self.inputs.iter().skip(1).zip(expected.iter())
|
||||
{
|
||||
if &a.0 != b {
|
||||
return false
|
||||
}
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
pub fn num_inputs(&self) -> usize {
|
||||
self.inputs.len()
|
||||
}
|
||||
|
||||
pub fn get_input(&mut self, index: usize, path: &str) -> E::Fr
|
||||
{
|
||||
let (assignment, name) = self.inputs[index].clone();
|
||||
|
||||
assert_eq!(path, name);
|
||||
|
||||
assignment
|
||||
}
|
||||
|
||||
pub fn get(&mut self, path: &str) -> E::Fr
|
||||
{
|
||||
match self.named_objects.get(path) {
|
||||
Some(&NamedObject::Var(ref v)) => {
|
||||
match v.get_unchecked() {
|
||||
Index::Input(index) => self.inputs[index].0,
|
||||
Index::Aux(index) => self.aux[index].0
|
||||
}
|
||||
}
|
||||
Some(e) => panic!("tried to get value of path `{}`, but `{:?}` exists there (not a variable)", path, e),
|
||||
_ => panic!("no variable exists at path: {}", path)
|
||||
}
|
||||
}
|
||||
|
||||
fn set_named_obj(&mut self, path: String, to: NamedObject) {
|
||||
if self.named_objects.contains_key(&path) {
|
||||
panic!("tried to create object at existing path: {}", path);
|
||||
}
|
||||
|
||||
self.named_objects.insert(path, to);
|
||||
}
|
||||
}
|
||||
|
||||
fn compute_path(ns: &[String], this: String) -> String {
|
||||
if this.chars().any(|a| a == '/') {
|
||||
panic!("'/' is not allowed in names");
|
||||
}
|
||||
|
||||
let mut name = String::new();
|
||||
|
||||
let mut needs_separation = false;
|
||||
for ns in ns.iter().chain(Some(&this).into_iter())
|
||||
{
|
||||
if needs_separation {
|
||||
name += "/";
|
||||
}
|
||||
|
||||
name += ns;
|
||||
needs_separation = true;
|
||||
}
|
||||
|
||||
name
|
||||
}
|
||||
|
||||
impl<E: Engine> ConstraintSystem<E> for TestConstraintSystem<E> {
|
||||
type Root = Self;
|
||||
|
||||
fn alloc<F, A, AR>(
|
||||
&mut self,
|
||||
annotation: A,
|
||||
f: F
|
||||
) -> Result<Variable, SynthesisError>
|
||||
where F: FnOnce() -> Result<E::Fr, SynthesisError>, A: FnOnce() -> AR, AR: Into<String>
|
||||
{
|
||||
let index = self.aux.len();
|
||||
let path = compute_path(&self.current_namespace, annotation().into());
|
||||
self.aux.push((f()?, path.clone()));
|
||||
let var = Variable::new_unchecked(Index::Aux(index));
|
||||
self.set_named_obj(path, NamedObject::Var(var));
|
||||
|
||||
Ok(var)
|
||||
}
|
||||
|
||||
fn alloc_input<F, A, AR>(
|
||||
&mut self,
|
||||
annotation: A,
|
||||
f: F
|
||||
) -> Result<Variable, SynthesisError>
|
||||
where F: FnOnce() -> Result<E::Fr, SynthesisError>, A: FnOnce() -> AR, AR: Into<String>
|
||||
{
|
||||
let index = self.inputs.len();
|
||||
let path = compute_path(&self.current_namespace, annotation().into());
|
||||
self.inputs.push((f()?, path.clone()));
|
||||
let var = Variable::new_unchecked(Index::Input(index));
|
||||
self.set_named_obj(path, NamedObject::Var(var));
|
||||
|
||||
Ok(var)
|
||||
}
|
||||
|
||||
fn enforce<A, AR, LA, LB, LC>(
|
||||
&mut self,
|
||||
annotation: A,
|
||||
a: LA,
|
||||
b: LB,
|
||||
c: LC
|
||||
)
|
||||
where A: FnOnce() -> AR, AR: Into<String>,
|
||||
LA: FnOnce(LinearCombination<E>) -> LinearCombination<E>,
|
||||
LB: FnOnce(LinearCombination<E>) -> LinearCombination<E>,
|
||||
LC: FnOnce(LinearCombination<E>) -> LinearCombination<E>
|
||||
{
|
||||
let path = compute_path(&self.current_namespace, annotation().into());
|
||||
let index = self.constraints.len();
|
||||
self.set_named_obj(path.clone(), NamedObject::Constraint(index));
|
||||
|
||||
let a = a(LinearCombination::zero());
|
||||
let b = b(LinearCombination::zero());
|
||||
let c = c(LinearCombination::zero());
|
||||
|
||||
self.constraints.push((a, b, c, path));
|
||||
}
|
||||
|
||||
fn push_namespace<NR, N>(&mut self, name_fn: N)
|
||||
where NR: Into<String>, N: FnOnce() -> NR
|
||||
{
|
||||
let name = name_fn().into();
|
||||
let path = compute_path(&self.current_namespace, name.clone());
|
||||
self.set_named_obj(path.clone(), NamedObject::Namespace);
|
||||
self.current_namespace.push(name);
|
||||
}
|
||||
|
||||
fn pop_namespace(&mut self)
|
||||
{
|
||||
assert!(self.current_namespace.pop().is_some());
|
||||
}
|
||||
|
||||
fn get_root(&mut self) -> &mut Self::Root
|
||||
{
|
||||
self
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_cs() {
|
||||
use pairing::bls12_381::{Bls12, Fr};
|
||||
use pairing::PrimeField;
|
||||
|
||||
let mut cs = TestConstraintSystem::<Bls12>::new();
|
||||
assert!(cs.is_satisfied());
|
||||
assert_eq!(cs.num_constraints(), 0);
|
||||
let a = cs.namespace(|| "a").alloc(|| "var", || Ok(Fr::from_str("10").unwrap())).unwrap();
|
||||
let b = cs.namespace(|| "b").alloc(|| "var", || Ok(Fr::from_str("4").unwrap())).unwrap();
|
||||
let c = cs.alloc(|| "product", || Ok(Fr::from_str("40").unwrap())).unwrap();
|
||||
|
||||
cs.enforce(
|
||||
|| "mult",
|
||||
|lc| lc + a,
|
||||
|lc| lc + b,
|
||||
|lc| lc + c
|
||||
);
|
||||
assert!(cs.is_satisfied());
|
||||
assert_eq!(cs.num_constraints(), 1);
|
||||
|
||||
cs.set("a/var", Fr::from_str("4").unwrap());
|
||||
|
||||
let one = TestConstraintSystem::<Bls12>::one();
|
||||
cs.enforce(
|
||||
|| "eq",
|
||||
|lc| lc + a,
|
||||
|lc| lc + one,
|
||||
|lc| lc + b
|
||||
);
|
||||
|
||||
assert!(!cs.is_satisfied());
|
||||
assert!(cs.which_is_unsatisfied() == Some("mult"));
|
||||
|
||||
assert!(cs.get("product") == Fr::from_str("40").unwrap());
|
||||
|
||||
cs.set("product", Fr::from_str("16").unwrap());
|
||||
assert!(cs.is_satisfied());
|
||||
|
||||
{
|
||||
let mut cs = cs.namespace(|| "test1");
|
||||
let mut cs = cs.namespace(|| "test2");
|
||||
cs.alloc(|| "hehe", || Ok(Fr::one())).unwrap();
|
||||
}
|
||||
|
||||
assert!(cs.get("test1/test2/hehe") == Fr::one());
|
||||
}
|
755
sapling-crypto/src/circuit/uint32.rs
Normal file
755
sapling-crypto/src/circuit/uint32.rs
Normal file
@@ -0,0 +1,755 @@
|
||||
use pairing::{
|
||||
Engine,
|
||||
Field,
|
||||
PrimeField
|
||||
};
|
||||
|
||||
use bellman::{
|
||||
SynthesisError,
|
||||
ConstraintSystem,
|
||||
LinearCombination
|
||||
};
|
||||
|
||||
use super::boolean::{
|
||||
Boolean,
|
||||
AllocatedBit
|
||||
};
|
||||
|
||||
use super::multieq::MultiEq;
|
||||
|
||||
/// Represents an interpretation of 32 `Boolean` objects as an
|
||||
/// unsigned integer.
|
||||
#[derive(Clone)]
|
||||
pub struct UInt32 {
|
||||
// Least significant bit first
|
||||
bits: Vec<Boolean>,
|
||||
value: Option<u32>
|
||||
}
|
||||
|
||||
impl UInt32 {
|
||||
/// Construct a constant `UInt32` from a `u32`
|
||||
pub fn constant(value: u32) -> Self
|
||||
{
|
||||
let mut bits = Vec::with_capacity(32);
|
||||
|
||||
let mut tmp = value;
|
||||
for _ in 0..32 {
|
||||
if tmp & 1 == 1 {
|
||||
bits.push(Boolean::constant(true))
|
||||
} else {
|
||||
bits.push(Boolean::constant(false))
|
||||
}
|
||||
|
||||
tmp >>= 1;
|
||||
}
|
||||
|
||||
UInt32 {
|
||||
bits: bits,
|
||||
value: Some(value)
|
||||
}
|
||||
}
|
||||
|
||||
/// Allocate a `UInt32` in the constraint system
|
||||
pub fn alloc<E, CS>(
|
||||
mut cs: CS,
|
||||
value: Option<u32>
|
||||
) -> Result<Self, SynthesisError>
|
||||
where E: Engine,
|
||||
CS: ConstraintSystem<E>
|
||||
{
|
||||
let values = match value {
|
||||
Some(mut val) => {
|
||||
let mut v = Vec::with_capacity(32);
|
||||
|
||||
for _ in 0..32 {
|
||||
v.push(Some(val & 1 == 1));
|
||||
val >>= 1;
|
||||
}
|
||||
|
||||
v
|
||||
},
|
||||
None => vec![None; 32]
|
||||
};
|
||||
|
||||
let bits = values.into_iter()
|
||||
.enumerate()
|
||||
.map(|(i, v)| {
|
||||
Ok(Boolean::from(AllocatedBit::alloc(
|
||||
cs.namespace(|| format!("allocated bit {}", i)),
|
||||
v
|
||||
)?))
|
||||
})
|
||||
.collect::<Result<Vec<_>, SynthesisError>>()?;
|
||||
|
||||
Ok(UInt32 {
|
||||
bits: bits,
|
||||
value: value
|
||||
})
|
||||
}
|
||||
|
||||
pub fn into_bits_be(&self) -> Vec<Boolean> {
|
||||
self.bits.iter().rev().cloned().collect()
|
||||
}
|
||||
|
||||
pub fn from_bits_be(bits: &[Boolean]) -> Self {
|
||||
assert_eq!(bits.len(), 32);
|
||||
|
||||
let mut value = Some(0u32);
|
||||
for b in bits {
|
||||
value.as_mut().map(|v| *v <<= 1);
|
||||
|
||||
match b.get_value() {
|
||||
Some(true) => { value.as_mut().map(|v| *v |= 1); },
|
||||
Some(false) => {},
|
||||
None => { value = None; }
|
||||
}
|
||||
}
|
||||
|
||||
UInt32 {
|
||||
value: value,
|
||||
bits: bits.iter().rev().cloned().collect()
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/// Turns this `UInt32` into its little-endian byte order representation.
|
||||
pub fn into_bits(&self) -> Vec<Boolean> {
|
||||
self.bits.clone()
|
||||
}
|
||||
|
||||
/// Converts a little-endian byte order representation of bits into a
|
||||
/// `UInt32`.
|
||||
pub fn from_bits(bits: &[Boolean]) -> Self
|
||||
{
|
||||
assert_eq!(bits.len(), 32);
|
||||
|
||||
let new_bits = bits.to_vec();
|
||||
|
||||
let mut value = Some(0u32);
|
||||
for b in new_bits.iter().rev() {
|
||||
value.as_mut().map(|v| *v <<= 1);
|
||||
|
||||
match b {
|
||||
&Boolean::Constant(b) => {
|
||||
if b {
|
||||
value.as_mut().map(|v| *v |= 1);
|
||||
}
|
||||
},
|
||||
&Boolean::Is(ref b) => {
|
||||
match b.get_value() {
|
||||
Some(true) => { value.as_mut().map(|v| *v |= 1); },
|
||||
Some(false) => {},
|
||||
None => { value = None }
|
||||
}
|
||||
},
|
||||
&Boolean::Not(ref b) => {
|
||||
match b.get_value() {
|
||||
Some(false) => { value.as_mut().map(|v| *v |= 1); },
|
||||
Some(true) => {},
|
||||
None => { value = None }
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
UInt32 {
|
||||
value: value,
|
||||
bits: new_bits
|
||||
}
|
||||
}
|
||||
|
||||
pub fn rotr(&self, by: usize) -> Self {
|
||||
let by = by % 32;
|
||||
|
||||
let new_bits = self.bits.iter()
|
||||
.skip(by)
|
||||
.chain(self.bits.iter())
|
||||
.take(32)
|
||||
.cloned()
|
||||
.collect();
|
||||
|
||||
UInt32 {
|
||||
bits: new_bits,
|
||||
value: self.value.map(|v| v.rotate_right(by as u32))
|
||||
}
|
||||
}
|
||||
|
||||
pub fn shr(&self, by: usize) -> Self {
|
||||
let by = by % 32;
|
||||
|
||||
let fill = Boolean::constant(false);
|
||||
|
||||
let new_bits = self.bits
|
||||
.iter() // The bits are least significant first
|
||||
.skip(by) // Skip the bits that will be lost during the shift
|
||||
.chain(Some(&fill).into_iter().cycle()) // Rest will be zeros
|
||||
.take(32) // Only 32 bits needed!
|
||||
.cloned()
|
||||
.collect();
|
||||
|
||||
UInt32 {
|
||||
bits: new_bits,
|
||||
value: self.value.map(|v| v >> by as u32)
|
||||
}
|
||||
}
|
||||
|
||||
fn triop<E, CS, F, U>(
|
||||
mut cs: CS,
|
||||
a: &Self,
|
||||
b: &Self,
|
||||
c: &Self,
|
||||
tri_fn: F,
|
||||
circuit_fn: U
|
||||
) -> Result<Self, SynthesisError>
|
||||
where E: Engine,
|
||||
CS: ConstraintSystem<E>,
|
||||
F: Fn(u32, u32, u32) -> u32,
|
||||
U: Fn(&mut CS, usize, &Boolean, &Boolean, &Boolean) -> Result<Boolean, SynthesisError>
|
||||
{
|
||||
let new_value = match (a.value, b.value, c.value) {
|
||||
(Some(a), Some(b), Some(c)) => {
|
||||
Some(tri_fn(a, b, c))
|
||||
},
|
||||
_ => None
|
||||
};
|
||||
|
||||
let bits = a.bits.iter()
|
||||
.zip(b.bits.iter())
|
||||
.zip(c.bits.iter())
|
||||
.enumerate()
|
||||
.map(|(i, ((a, b), c))| circuit_fn(&mut cs, i, a, b, c))
|
||||
.collect::<Result<_, _>>()?;
|
||||
|
||||
Ok(UInt32 {
|
||||
bits: bits,
|
||||
value: new_value
|
||||
})
|
||||
}
|
||||
|
||||
/// Compute the `maj` value (a and b) xor (a and c) xor (b and c)
|
||||
/// during SHA256.
|
||||
pub fn sha256_maj<E, CS>(
|
||||
cs: CS,
|
||||
a: &Self,
|
||||
b: &Self,
|
||||
c: &Self
|
||||
) -> Result<Self, SynthesisError>
|
||||
where E: Engine,
|
||||
CS: ConstraintSystem<E>
|
||||
{
|
||||
Self::triop(cs, a, b, c, |a, b, c| (a & b) ^ (a & c) ^ (b & c),
|
||||
|cs, i, a, b, c| {
|
||||
Boolean::sha256_maj(
|
||||
cs.namespace(|| format!("maj {}", i)),
|
||||
a,
|
||||
b,
|
||||
c
|
||||
)
|
||||
}
|
||||
)
|
||||
}
|
||||
|
||||
/// Compute the `ch` value `(a and b) xor ((not a) and c)`
|
||||
/// during SHA256.
|
||||
pub fn sha256_ch<E, CS>(
|
||||
cs: CS,
|
||||
a: &Self,
|
||||
b: &Self,
|
||||
c: &Self
|
||||
) -> Result<Self, SynthesisError>
|
||||
where E: Engine,
|
||||
CS: ConstraintSystem<E>
|
||||
{
|
||||
Self::triop(cs, a, b, c, |a, b, c| (a & b) ^ ((!a) & c),
|
||||
|cs, i, a, b, c| {
|
||||
Boolean::sha256_ch(
|
||||
cs.namespace(|| format!("ch {}", i)),
|
||||
a,
|
||||
b,
|
||||
c
|
||||
)
|
||||
}
|
||||
)
|
||||
}
|
||||
|
||||
/// XOR this `UInt32` with another `UInt32`
|
||||
pub fn xor<E, CS>(
|
||||
&self,
|
||||
mut cs: CS,
|
||||
other: &Self
|
||||
) -> Result<Self, SynthesisError>
|
||||
where E: Engine,
|
||||
CS: ConstraintSystem<E>
|
||||
{
|
||||
let new_value = match (self.value, other.value) {
|
||||
(Some(a), Some(b)) => {
|
||||
Some(a ^ b)
|
||||
},
|
||||
_ => None
|
||||
};
|
||||
|
||||
let bits = self.bits.iter()
|
||||
.zip(other.bits.iter())
|
||||
.enumerate()
|
||||
.map(|(i, (a, b))| {
|
||||
Boolean::xor(
|
||||
cs.namespace(|| format!("xor of bit {}", i)),
|
||||
a,
|
||||
b
|
||||
)
|
||||
})
|
||||
.collect::<Result<_, _>>()?;
|
||||
|
||||
Ok(UInt32 {
|
||||
bits: bits,
|
||||
value: new_value
|
||||
})
|
||||
}
|
||||
|
||||
/// Perform modular addition of several `UInt32` objects.
|
||||
pub fn addmany<E, CS, M>(
|
||||
mut cs: M,
|
||||
operands: &[Self]
|
||||
) -> Result<Self, SynthesisError>
|
||||
where E: Engine,
|
||||
CS: ConstraintSystem<E>,
|
||||
M: ConstraintSystem<E, Root=MultiEq<E, CS>>
|
||||
{
|
||||
// Make some arbitrary bounds for ourselves to avoid overflows
|
||||
// in the scalar field
|
||||
assert!(E::Fr::NUM_BITS >= 64);
|
||||
assert!(operands.len() >= 2); // Weird trivial cases that should never happen
|
||||
assert!(operands.len() <= 10);
|
||||
|
||||
// Compute the maximum value of the sum so we allocate enough bits for
|
||||
// the result
|
||||
let mut max_value = (operands.len() as u64) * (u32::max_value() as u64);
|
||||
|
||||
// Keep track of the resulting value
|
||||
let mut result_value = Some(0u64);
|
||||
|
||||
// This is a linear combination that we will enforce to equal the
|
||||
// output
|
||||
let mut lc = LinearCombination::zero();
|
||||
|
||||
let mut all_constants = true;
|
||||
|
||||
// Iterate over the operands
|
||||
for op in operands {
|
||||
// Accumulate the value
|
||||
match op.value {
|
||||
Some(val) => {
|
||||
result_value.as_mut().map(|v| *v += val as u64);
|
||||
},
|
||||
None => {
|
||||
// If any of our operands have unknown value, we won't
|
||||
// know the value of the result
|
||||
result_value = None;
|
||||
}
|
||||
}
|
||||
|
||||
// Iterate over each bit of the operand and add the operand to
|
||||
// the linear combination
|
||||
let mut coeff = E::Fr::one();
|
||||
for bit in &op.bits {
|
||||
lc = lc + &bit.lc(CS::one(), coeff);
|
||||
|
||||
all_constants &= bit.is_constant();
|
||||
|
||||
coeff.double();
|
||||
}
|
||||
}
|
||||
|
||||
// The value of the actual result is modulo 2^32
|
||||
let modular_value = result_value.map(|v| v as u32);
|
||||
|
||||
if all_constants && modular_value.is_some() {
|
||||
// We can just return a constant, rather than
|
||||
// unpacking the result into allocated bits.
|
||||
|
||||
return Ok(UInt32::constant(modular_value.unwrap()));
|
||||
}
|
||||
|
||||
// Storage area for the resulting bits
|
||||
let mut result_bits = vec![];
|
||||
|
||||
// Linear combination representing the output,
|
||||
// for comparison with the sum of the operands
|
||||
let mut result_lc = LinearCombination::zero();
|
||||
|
||||
// Allocate each bit of the result
|
||||
let mut coeff = E::Fr::one();
|
||||
let mut i = 0;
|
||||
while max_value != 0 {
|
||||
// Allocate the bit
|
||||
let b = AllocatedBit::alloc(
|
||||
cs.namespace(|| format!("result bit {}", i)),
|
||||
result_value.map(|v| (v >> i) & 1 == 1)
|
||||
)?;
|
||||
|
||||
// Add this bit to the result combination
|
||||
result_lc = result_lc + (coeff, b.get_variable());
|
||||
|
||||
result_bits.push(b.into());
|
||||
|
||||
max_value >>= 1;
|
||||
i += 1;
|
||||
coeff.double();
|
||||
}
|
||||
|
||||
// Enforce equality between the sum and result
|
||||
cs.get_root().enforce_equal(i, &lc, &result_lc);
|
||||
|
||||
// Discard carry bits that we don't care about
|
||||
result_bits.truncate(32);
|
||||
|
||||
Ok(UInt32 {
|
||||
bits: result_bits,
|
||||
value: modular_value
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod test {
|
||||
use rand::{XorShiftRng, SeedableRng, Rng};
|
||||
use ::circuit::boolean::{Boolean};
|
||||
use super::{UInt32};
|
||||
use pairing::bls12_381::{Bls12};
|
||||
use pairing::{Field};
|
||||
use ::circuit::test::*;
|
||||
use bellman::{ConstraintSystem};
|
||||
use circuit::multieq::MultiEq;
|
||||
|
||||
#[test]
|
||||
fn test_uint32_from_bits_be() {
|
||||
let mut rng = XorShiftRng::from_seed([0x5dbe6259, 0x8d313d76, 0x3237db17, 0xe5bc0653]);
|
||||
|
||||
for _ in 0..1000 {
|
||||
let mut v = (0..32).map(|_| Boolean::constant(rng.gen())).collect::<Vec<_>>();
|
||||
|
||||
let b = UInt32::from_bits_be(&v);
|
||||
|
||||
for (i, bit) in b.bits.iter().enumerate() {
|
||||
match bit {
|
||||
&Boolean::Constant(bit) => {
|
||||
assert!(bit == ((b.value.unwrap() >> i) & 1 == 1));
|
||||
},
|
||||
_ => unreachable!()
|
||||
}
|
||||
}
|
||||
|
||||
let expected_to_be_same = b.into_bits_be();
|
||||
|
||||
for x in v.iter().zip(expected_to_be_same.iter())
|
||||
{
|
||||
match x {
|
||||
(&Boolean::Constant(true), &Boolean::Constant(true)) => {},
|
||||
(&Boolean::Constant(false), &Boolean::Constant(false)) => {},
|
||||
_ => unreachable!()
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_uint32_from_bits() {
|
||||
let mut rng = XorShiftRng::from_seed([0x5dbe6259, 0x8d313d76, 0x3237db17, 0xe5bc0653]);
|
||||
|
||||
for _ in 0..1000 {
|
||||
let mut v = (0..32).map(|_| Boolean::constant(rng.gen())).collect::<Vec<_>>();
|
||||
|
||||
let b = UInt32::from_bits(&v);
|
||||
|
||||
for (i, bit) in b.bits.iter().enumerate() {
|
||||
match bit {
|
||||
&Boolean::Constant(bit) => {
|
||||
assert!(bit == ((b.value.unwrap() >> i) & 1 == 1));
|
||||
},
|
||||
_ => unreachable!()
|
||||
}
|
||||
}
|
||||
|
||||
let expected_to_be_same = b.into_bits();
|
||||
|
||||
for x in v.iter().zip(expected_to_be_same.iter())
|
||||
{
|
||||
match x {
|
||||
(&Boolean::Constant(true), &Boolean::Constant(true)) => {},
|
||||
(&Boolean::Constant(false), &Boolean::Constant(false)) => {},
|
||||
_ => unreachable!()
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_uint32_xor() {
|
||||
let mut rng = XorShiftRng::from_seed([0x5dbe6259, 0x8d313d76, 0x3237db17, 0xe5bc0653]);
|
||||
|
||||
for _ in 0..1000 {
|
||||
let mut cs = TestConstraintSystem::<Bls12>::new();
|
||||
|
||||
let a: u32 = rng.gen();
|
||||
let b: u32 = rng.gen();
|
||||
let c: u32 = rng.gen();
|
||||
|
||||
let mut expected = a ^ b ^ c;
|
||||
|
||||
let a_bit = UInt32::alloc(cs.namespace(|| "a_bit"), Some(a)).unwrap();
|
||||
let b_bit = UInt32::constant(b);
|
||||
let c_bit = UInt32::alloc(cs.namespace(|| "c_bit"), Some(c)).unwrap();
|
||||
|
||||
let r = a_bit.xor(cs.namespace(|| "first xor"), &b_bit).unwrap();
|
||||
let r = r.xor(cs.namespace(|| "second xor"), &c_bit).unwrap();
|
||||
|
||||
assert!(cs.is_satisfied());
|
||||
|
||||
assert!(r.value == Some(expected));
|
||||
|
||||
for b in r.bits.iter() {
|
||||
match b {
|
||||
&Boolean::Is(ref b) => {
|
||||
assert!(b.get_value().unwrap() == (expected & 1 == 1));
|
||||
},
|
||||
&Boolean::Not(ref b) => {
|
||||
assert!(!b.get_value().unwrap() == (expected & 1 == 1));
|
||||
},
|
||||
&Boolean::Constant(b) => {
|
||||
assert!(b == (expected & 1 == 1));
|
||||
}
|
||||
}
|
||||
|
||||
expected >>= 1;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_uint32_addmany_constants() {
|
||||
let mut rng = XorShiftRng::from_seed([0x5dbe6259, 0x8d313d76, 0x3237db17, 0xe5bc0654]);
|
||||
|
||||
for _ in 0..1000 {
|
||||
let mut cs = TestConstraintSystem::<Bls12>::new();
|
||||
|
||||
let a: u32 = rng.gen();
|
||||
let b: u32 = rng.gen();
|
||||
let c: u32 = rng.gen();
|
||||
|
||||
let a_bit = UInt32::constant(a);
|
||||
let b_bit = UInt32::constant(b);
|
||||
let c_bit = UInt32::constant(c);
|
||||
|
||||
let mut expected = a.wrapping_add(b).wrapping_add(c);
|
||||
|
||||
let r = {
|
||||
let mut cs = MultiEq::new(&mut cs);
|
||||
let r = UInt32::addmany(cs.namespace(|| "addition"), &[a_bit, b_bit, c_bit]).unwrap();
|
||||
r
|
||||
};
|
||||
|
||||
assert!(r.value == Some(expected));
|
||||
|
||||
for b in r.bits.iter() {
|
||||
match b {
|
||||
&Boolean::Is(_) => panic!(),
|
||||
&Boolean::Not(_) => panic!(),
|
||||
&Boolean::Constant(b) => {
|
||||
assert!(b == (expected & 1 == 1));
|
||||
}
|
||||
}
|
||||
|
||||
expected >>= 1;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_uint32_addmany() {
|
||||
let mut rng = XorShiftRng::from_seed([0x5dbe6259, 0x8d313d76, 0x3237db17, 0xe5bc0654]);
|
||||
|
||||
for _ in 0..1000 {
|
||||
let mut cs = TestConstraintSystem::<Bls12>::new();
|
||||
|
||||
let a: u32 = rng.gen();
|
||||
let b: u32 = rng.gen();
|
||||
let c: u32 = rng.gen();
|
||||
let d: u32 = rng.gen();
|
||||
|
||||
let mut expected = (a ^ b).wrapping_add(c).wrapping_add(d);
|
||||
|
||||
let a_bit = UInt32::alloc(cs.namespace(|| "a_bit"), Some(a)).unwrap();
|
||||
let b_bit = UInt32::constant(b);
|
||||
let c_bit = UInt32::constant(c);
|
||||
let d_bit = UInt32::alloc(cs.namespace(|| "d_bit"), Some(d)).unwrap();
|
||||
|
||||
let r = a_bit.xor(cs.namespace(|| "xor"), &b_bit).unwrap();
|
||||
let r = {
|
||||
let mut cs = MultiEq::new(&mut cs);
|
||||
let r = UInt32::addmany(cs.namespace(|| "addition"), &[r, c_bit, d_bit]).unwrap();
|
||||
r
|
||||
};
|
||||
|
||||
assert!(cs.is_satisfied());
|
||||
|
||||
assert!(r.value == Some(expected));
|
||||
|
||||
for b in r.bits.iter() {
|
||||
match b {
|
||||
&Boolean::Is(ref b) => {
|
||||
assert!(b.get_value().unwrap() == (expected & 1 == 1));
|
||||
},
|
||||
&Boolean::Not(ref b) => {
|
||||
assert!(!b.get_value().unwrap() == (expected & 1 == 1));
|
||||
},
|
||||
&Boolean::Constant(_) => {
|
||||
unreachable!()
|
||||
}
|
||||
}
|
||||
|
||||
expected >>= 1;
|
||||
}
|
||||
|
||||
// Flip a bit and see if the addition constraint still works
|
||||
if cs.get("addition/result bit 0/boolean").is_zero() {
|
||||
cs.set("addition/result bit 0/boolean", Field::one());
|
||||
} else {
|
||||
cs.set("addition/result bit 0/boolean", Field::zero());
|
||||
}
|
||||
|
||||
assert!(!cs.is_satisfied());
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_uint32_rotr() {
|
||||
let mut rng = XorShiftRng::from_seed([0x5dbe6259, 0x8d313d76, 0x3237db17, 0xe5bc0654]);
|
||||
|
||||
let mut num = rng.gen();
|
||||
|
||||
let a = UInt32::constant(num);
|
||||
|
||||
for i in 0..32 {
|
||||
let b = a.rotr(i);
|
||||
assert_eq!(a.bits.len(), b.bits.len());
|
||||
|
||||
assert!(b.value.unwrap() == num);
|
||||
|
||||
let mut tmp = num;
|
||||
for b in &b.bits {
|
||||
match b {
|
||||
&Boolean::Constant(b) => {
|
||||
assert_eq!(b, tmp & 1 == 1);
|
||||
},
|
||||
_ => unreachable!()
|
||||
}
|
||||
|
||||
tmp >>= 1;
|
||||
}
|
||||
|
||||
num = num.rotate_right(1);
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_uint32_shr() {
|
||||
let mut rng = XorShiftRng::from_seed([0x5dbe6259, 0x8d313d76, 0x3237db17, 0xe5bc0654]);
|
||||
|
||||
for _ in 0..50 {
|
||||
for i in 0..60 {
|
||||
let num = rng.gen();
|
||||
let a = UInt32::constant(num).shr(i);
|
||||
let b = UInt32::constant(num >> i);
|
||||
|
||||
assert_eq!(a.value.unwrap(), num >> i);
|
||||
|
||||
assert_eq!(a.bits.len(), b.bits.len());
|
||||
for (a, b) in a.bits.iter().zip(b.bits.iter()) {
|
||||
assert_eq!(a.get_value().unwrap(), b.get_value().unwrap());
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_uint32_sha256_maj() {
|
||||
let mut rng = XorShiftRng::from_seed([0x5dbe6259, 0x8d313d76, 0x3237db17, 0xe5bc0653]);
|
||||
|
||||
for _ in 0..1000 {
|
||||
let mut cs = TestConstraintSystem::<Bls12>::new();
|
||||
|
||||
let a: u32 = rng.gen();
|
||||
let b: u32 = rng.gen();
|
||||
let c: u32 = rng.gen();
|
||||
|
||||
let mut expected = (a & b) ^ (a & c) ^ (b & c);
|
||||
|
||||
let a_bit = UInt32::alloc(cs.namespace(|| "a_bit"), Some(a)).unwrap();
|
||||
let b_bit = UInt32::constant(b);
|
||||
let c_bit = UInt32::alloc(cs.namespace(|| "c_bit"), Some(c)).unwrap();
|
||||
|
||||
let r = UInt32::sha256_maj(&mut cs, &a_bit, &b_bit, &c_bit).unwrap();
|
||||
|
||||
assert!(cs.is_satisfied());
|
||||
|
||||
assert!(r.value == Some(expected));
|
||||
|
||||
for b in r.bits.iter() {
|
||||
match b {
|
||||
&Boolean::Is(ref b) => {
|
||||
assert!(b.get_value().unwrap() == (expected & 1 == 1));
|
||||
},
|
||||
&Boolean::Not(ref b) => {
|
||||
assert!(!b.get_value().unwrap() == (expected & 1 == 1));
|
||||
},
|
||||
&Boolean::Constant(b) => {
|
||||
assert!(b == (expected & 1 == 1));
|
||||
}
|
||||
}
|
||||
|
||||
expected >>= 1;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_uint32_sha256_ch() {
|
||||
let mut rng = XorShiftRng::from_seed([0x5dbe6259, 0x8d313d76, 0x3237db17, 0xe5bc0653]);
|
||||
|
||||
for _ in 0..1000 {
|
||||
let mut cs = TestConstraintSystem::<Bls12>::new();
|
||||
|
||||
let a: u32 = rng.gen();
|
||||
let b: u32 = rng.gen();
|
||||
let c: u32 = rng.gen();
|
||||
|
||||
let mut expected = (a & b) ^ ((!a) & c);
|
||||
|
||||
let a_bit = UInt32::alloc(cs.namespace(|| "a_bit"), Some(a)).unwrap();
|
||||
let b_bit = UInt32::constant(b);
|
||||
let c_bit = UInt32::alloc(cs.namespace(|| "c_bit"), Some(c)).unwrap();
|
||||
|
||||
let r = UInt32::sha256_ch(&mut cs, &a_bit, &b_bit, &c_bit).unwrap();
|
||||
|
||||
assert!(cs.is_satisfied());
|
||||
|
||||
assert!(r.value == Some(expected));
|
||||
|
||||
for b in r.bits.iter() {
|
||||
match b {
|
||||
&Boolean::Is(ref b) => {
|
||||
assert!(b.get_value().unwrap() == (expected & 1 == 1));
|
||||
},
|
||||
&Boolean::Not(ref b) => {
|
||||
assert!(!b.get_value().unwrap() == (expected & 1 == 1));
|
||||
},
|
||||
&Boolean::Constant(b) => {
|
||||
assert!(b == (expected & 1 == 1));
|
||||
}
|
||||
}
|
||||
|
||||
expected >>= 1;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
40
sapling-crypto/src/constants.rs
Normal file
40
sapling-crypto/src/constants.rs
Normal file
@@ -0,0 +1,40 @@
|
||||
/// First 64 bytes of the BLAKE2s input during group hash.
|
||||
/// This is chosen to be some random string that we couldn't have anticipated when we designed
|
||||
/// the algorithm, for rigidity purposes.
|
||||
/// We deliberately use an ASCII hex string of 32 bytes here.
|
||||
pub const GH_FIRST_BLOCK: &'static [u8; 64]
|
||||
= b"096b36a5804bfacef1691e173c366a47ff5ba84a44f26ddd7e8d9f79d5b42df0";
|
||||
|
||||
// BLAKE2s invocation personalizations
|
||||
/// BLAKE2s Personalization for CRH^ivk = BLAKE2s(ak | nk)
|
||||
pub const CRH_IVK_PERSONALIZATION: &'static [u8; 8]
|
||||
= b"Zcashivk";
|
||||
|
||||
/// BLAKE2s Personalization for PRF^nf = BLAKE2s(nk | rho)
|
||||
pub const PRF_NF_PERSONALIZATION: &'static [u8; 8]
|
||||
= b"Zcash_nf";
|
||||
|
||||
// Group hash personalizations
|
||||
/// BLAKE2s Personalization for Pedersen hash generators.
|
||||
pub const PEDERSEN_HASH_GENERATORS_PERSONALIZATION: &'static [u8; 8]
|
||||
= b"Zcash_PH";
|
||||
|
||||
/// BLAKE2s Personalization for the group hash for key diversification
|
||||
pub const KEY_DIVERSIFICATION_PERSONALIZATION: &'static [u8; 8]
|
||||
= b"Zcash_gd";
|
||||
|
||||
/// BLAKE2s Personalization for the spending key base point
|
||||
pub const SPENDING_KEY_GENERATOR_PERSONALIZATION: &'static [u8; 8]
|
||||
= b"Zcash_G_";
|
||||
|
||||
/// BLAKE2s Personalization for the proof generation key base point
|
||||
pub const PROOF_GENERATION_KEY_BASE_GENERATOR_PERSONALIZATION: &'static [u8; 8]
|
||||
= b"Zcash_H_";
|
||||
|
||||
/// BLAKE2s Personalization for the value commitment generator for the value
|
||||
pub const VALUE_COMMITMENT_GENERATOR_PERSONALIZATION: &'static [u8; 8]
|
||||
= b"Zcash_cv";
|
||||
|
||||
/// BLAKE2s Personalization for the nullifier position generator (for computing rho)
|
||||
pub const NULLIFIER_POSITION_IN_TREE_GENERATOR_PERSONALIZATION: &'static [u8; 8]
|
||||
= b"Zcash_J_";
|
46
sapling-crypto/src/group_hash.rs
Normal file
46
sapling-crypto/src/group_hash.rs
Normal file
@@ -0,0 +1,46 @@
|
||||
use jubjub::{
|
||||
JubjubEngine,
|
||||
PrimeOrder,
|
||||
edwards
|
||||
};
|
||||
|
||||
use pairing::{
|
||||
PrimeField
|
||||
};
|
||||
|
||||
use blake2_rfc::blake2s::Blake2s;
|
||||
use constants;
|
||||
|
||||
/// Produces a random point in the Jubjub curve.
|
||||
/// The point is guaranteed to be prime order
|
||||
/// and not the identity.
|
||||
pub fn group_hash<E: JubjubEngine>(
|
||||
tag: &[u8],
|
||||
personalization: &[u8],
|
||||
params: &E::Params
|
||||
) -> Option<edwards::Point<E, PrimeOrder>>
|
||||
{
|
||||
assert_eq!(personalization.len(), 8);
|
||||
|
||||
// Check to see that scalar field is 255 bits
|
||||
assert!(E::Fr::NUM_BITS == 255);
|
||||
|
||||
let mut h = Blake2s::with_params(32, &[], &[], personalization);
|
||||
h.update(constants::GH_FIRST_BLOCK);
|
||||
h.update(tag);
|
||||
let h = h.finalize().as_ref().to_vec();
|
||||
assert!(h.len() == 32);
|
||||
|
||||
match edwards::Point::<E, _>::read(&h[..], params) {
|
||||
Ok(p) => {
|
||||
let p = p.mul_by_cofactor(params);
|
||||
|
||||
if p != edwards::Point::zero() {
|
||||
Some(p)
|
||||
} else {
|
||||
None
|
||||
}
|
||||
},
|
||||
Err(_) => None
|
||||
}
|
||||
}
|
523
sapling-crypto/src/jubjub/edwards.rs
Normal file
523
sapling-crypto/src/jubjub/edwards.rs
Normal file
@@ -0,0 +1,523 @@
|
||||
use pairing::{
|
||||
Field,
|
||||
SqrtField,
|
||||
PrimeField,
|
||||
PrimeFieldRepr,
|
||||
BitIterator
|
||||
};
|
||||
|
||||
use super::{
|
||||
JubjubEngine,
|
||||
JubjubParams,
|
||||
Unknown,
|
||||
PrimeOrder,
|
||||
montgomery
|
||||
};
|
||||
|
||||
use rand::{
|
||||
Rng
|
||||
};
|
||||
|
||||
use std::marker::PhantomData;
|
||||
|
||||
use std::io::{
|
||||
self,
|
||||
Write,
|
||||
Read
|
||||
};
|
||||
|
||||
// Represents the affine point (X/Z, Y/Z) via the extended
|
||||
// twisted Edwards coordinates.
|
||||
//
|
||||
// See "Twisted Edwards Curves Revisited"
|
||||
// Huseyin Hisil, Kenneth Koon-Ho Wong, Gary Carter, and Ed Dawson
|
||||
pub struct Point<E: JubjubEngine, Subgroup> {
|
||||
x: E::Fr,
|
||||
y: E::Fr,
|
||||
t: E::Fr,
|
||||
z: E::Fr,
|
||||
_marker: PhantomData<Subgroup>
|
||||
}
|
||||
|
||||
fn convert_subgroup<E: JubjubEngine, S1, S2>(from: &Point<E, S1>) -> Point<E, S2>
|
||||
{
|
||||
Point {
|
||||
x: from.x,
|
||||
y: from.y,
|
||||
t: from.t,
|
||||
z: from.z,
|
||||
_marker: PhantomData
|
||||
}
|
||||
}
|
||||
|
||||
impl<E: JubjubEngine> From<Point<E, PrimeOrder>> for Point<E, Unknown>
|
||||
{
|
||||
fn from(p: Point<E, PrimeOrder>) -> Point<E, Unknown>
|
||||
{
|
||||
convert_subgroup(&p)
|
||||
}
|
||||
}
|
||||
|
||||
impl<E: JubjubEngine, Subgroup> Clone for Point<E, Subgroup>
|
||||
{
|
||||
fn clone(&self) -> Self {
|
||||
convert_subgroup(self)
|
||||
}
|
||||
}
|
||||
|
||||
impl<E: JubjubEngine, Subgroup> PartialEq for Point<E, Subgroup> {
|
||||
fn eq(&self, other: &Point<E, Subgroup>) -> bool {
|
||||
// p1 = (x1/z1, y1/z1)
|
||||
// p2 = (x2/z2, y2/z2)
|
||||
// Deciding that these two points are equal is a matter of
|
||||
// determining that x1/z1 = x2/z2, or equivalently that
|
||||
// x1*z2 = x2*z1, and similarly for y.
|
||||
|
||||
let mut x1 = self.x;
|
||||
x1.mul_assign(&other.z);
|
||||
|
||||
let mut y1 = self.y;
|
||||
y1.mul_assign(&other.z);
|
||||
|
||||
let mut x2 = other.x;
|
||||
x2.mul_assign(&self.z);
|
||||
|
||||
let mut y2 = other.y;
|
||||
y2.mul_assign(&self.z);
|
||||
|
||||
x1 == x2 && y1 == y2
|
||||
}
|
||||
}
|
||||
|
||||
impl<E: JubjubEngine> Point<E, Unknown> {
|
||||
pub fn read<R: Read>(
|
||||
reader: R,
|
||||
params: &E::Params
|
||||
) -> io::Result<Self>
|
||||
{
|
||||
let mut y_repr = <E::Fr as PrimeField>::Repr::default();
|
||||
y_repr.read_le(reader)?;
|
||||
|
||||
let x_sign = (y_repr.as_ref()[3] >> 63) == 1;
|
||||
y_repr.as_mut()[3] &= 0x7fffffffffffffff;
|
||||
|
||||
match E::Fr::from_repr(y_repr) {
|
||||
Ok(y) => {
|
||||
match Self::get_for_y(y, x_sign, params) {
|
||||
Some(p) => Ok(p),
|
||||
None => {
|
||||
Err(io::Error::new(io::ErrorKind::InvalidInput, "not on curve"))
|
||||
}
|
||||
}
|
||||
},
|
||||
Err(_) => {
|
||||
Err(io::Error::new(io::ErrorKind::InvalidInput, "y is not in field"))
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
pub fn get_for_y(y: E::Fr, sign: bool, params: &E::Params) -> Option<Self>
|
||||
{
|
||||
// Given a y on the curve, x^2 = (y^2 - 1) / (dy^2 + 1)
|
||||
// This is defined for all valid y-coordinates,
|
||||
// as dy^2 + 1 = 0 has no solution in Fr.
|
||||
|
||||
// tmp1 = y^2
|
||||
let mut tmp1 = y;
|
||||
tmp1.square();
|
||||
|
||||
// tmp2 = (y^2 * d) + 1
|
||||
let mut tmp2 = tmp1;
|
||||
tmp2.mul_assign(params.edwards_d());
|
||||
tmp2.add_assign(&E::Fr::one());
|
||||
|
||||
// tmp1 = y^2 - 1
|
||||
tmp1.sub_assign(&E::Fr::one());
|
||||
|
||||
match tmp2.inverse() {
|
||||
Some(tmp2) => {
|
||||
// tmp1 = (y^2 - 1) / (dy^2 + 1)
|
||||
tmp1.mul_assign(&tmp2);
|
||||
|
||||
match tmp1.sqrt() {
|
||||
Some(mut x) => {
|
||||
if x.into_repr().is_odd() != sign {
|
||||
x.negate();
|
||||
}
|
||||
|
||||
let mut t = x;
|
||||
t.mul_assign(&y);
|
||||
|
||||
Some(Point {
|
||||
x: x,
|
||||
y: y,
|
||||
t: t,
|
||||
z: E::Fr::one(),
|
||||
_marker: PhantomData
|
||||
})
|
||||
},
|
||||
None => None
|
||||
}
|
||||
},
|
||||
None => None
|
||||
}
|
||||
}
|
||||
|
||||
/// This guarantees the point is in the prime order subgroup
|
||||
#[must_use]
|
||||
pub fn mul_by_cofactor(&self, params: &E::Params) -> Point<E, PrimeOrder>
|
||||
{
|
||||
let tmp = self.double(params)
|
||||
.double(params)
|
||||
.double(params);
|
||||
|
||||
convert_subgroup(&tmp)
|
||||
}
|
||||
|
||||
pub fn rand<R: Rng>(rng: &mut R, params: &E::Params) -> Self
|
||||
{
|
||||
loop {
|
||||
let y: E::Fr = rng.gen();
|
||||
|
||||
if let Some(p) = Self::get_for_y(y, rng.gen(), params) {
|
||||
return p;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl<E: JubjubEngine, Subgroup> Point<E, Subgroup> {
|
||||
pub fn write<W: Write>(
|
||||
&self,
|
||||
writer: W
|
||||
) -> io::Result<()>
|
||||
{
|
||||
let (x, y) = self.into_xy();
|
||||
|
||||
assert_eq!(E::Fr::NUM_BITS, 255);
|
||||
|
||||
let x_repr = x.into_repr();
|
||||
let mut y_repr = y.into_repr();
|
||||
if x_repr.is_odd() {
|
||||
y_repr.as_mut()[3] |= 0x8000000000000000u64;
|
||||
}
|
||||
|
||||
y_repr.write_le(writer)
|
||||
}
|
||||
|
||||
/// Convert from a Montgomery point
|
||||
pub fn from_montgomery(
|
||||
m: &montgomery::Point<E, Subgroup>,
|
||||
params: &E::Params
|
||||
) -> Self
|
||||
{
|
||||
match m.into_xy() {
|
||||
None => {
|
||||
// Map the point at infinity to the neutral element.
|
||||
Point::zero()
|
||||
},
|
||||
Some((x, y)) => {
|
||||
// The map from a Montgomery curve is defined as:
|
||||
// (x, y) -> (u, v) where
|
||||
// u = x / y
|
||||
// v = (x - 1) / (x + 1)
|
||||
//
|
||||
// This map is not defined for y = 0 and x = -1.
|
||||
//
|
||||
// y = 0 is a valid point only for x = 0:
|
||||
// y^2 = x^3 + A.x^2 + x
|
||||
// 0 = x^3 + A.x^2 + x
|
||||
// 0 = x(x^2 + A.x + 1)
|
||||
// We have: x = 0 OR x^2 + A.x + 1 = 0
|
||||
// x^2 + A.x + 1 = 0
|
||||
// (2.x + A)^2 = A^2 - 4 (Complete the square.)
|
||||
// The left hand side is a square, and so if A^2 - 4
|
||||
// is nonsquare, there is no solution. Indeed, A^2 - 4
|
||||
// is nonsquare.
|
||||
//
|
||||
// (0, 0) is a point of order 2, and so we map it to
|
||||
// (0, -1) in the twisted Edwards curve, which is the
|
||||
// only point of order 2 that is not the neutral element.
|
||||
if y.is_zero() {
|
||||
// This must be the point (0, 0) as above.
|
||||
let mut neg1 = E::Fr::one();
|
||||
neg1.negate();
|
||||
|
||||
Point {
|
||||
x: E::Fr::zero(),
|
||||
y: neg1,
|
||||
t: E::Fr::zero(),
|
||||
z: E::Fr::one(),
|
||||
_marker: PhantomData
|
||||
}
|
||||
} else {
|
||||
// Otherwise, as stated above, the mapping is still
|
||||
// not defined at x = -1. However, x = -1 is not
|
||||
// on the curve when A - 2 is nonsquare:
|
||||
// y^2 = x^3 + A.x^2 + x
|
||||
// y^2 = (-1) + A + (-1)
|
||||
// y^2 = A - 2
|
||||
// Indeed, A - 2 is nonsquare.
|
||||
//
|
||||
// We need to map into (projective) extended twisted
|
||||
// Edwards coordinates (X, Y, T, Z) which represents
|
||||
// the point (X/Z, Y/Z) with Z nonzero and T = XY/Z.
|
||||
//
|
||||
// Thus, we compute...
|
||||
//
|
||||
// u = x(x + 1)
|
||||
// v = y(x - 1)
|
||||
// t = x(x - 1)
|
||||
// z = y(x + 1) (Cannot be nonzero, as above.)
|
||||
//
|
||||
// ... which represents the point ( x / y , (x - 1) / (x + 1) )
|
||||
// as required by the mapping and preserves the property of
|
||||
// the auxiliary coordinate t.
|
||||
//
|
||||
// We need to scale the coordinate, so u and t will have
|
||||
// an extra factor s.
|
||||
|
||||
// u = xs
|
||||
let mut u = x;
|
||||
u.mul_assign(params.scale());
|
||||
|
||||
// v = x - 1
|
||||
let mut v = x;
|
||||
v.sub_assign(&E::Fr::one());
|
||||
|
||||
// t = xs(x - 1)
|
||||
let mut t = u;
|
||||
t.mul_assign(&v);
|
||||
|
||||
// z = (x + 1)
|
||||
let mut z = x;
|
||||
z.add_assign(&E::Fr::one());
|
||||
|
||||
// u = xs(x + 1)
|
||||
u.mul_assign(&z);
|
||||
|
||||
// z = y(x + 1)
|
||||
z.mul_assign(&y);
|
||||
|
||||
// v = y(x - 1)
|
||||
v.mul_assign(&y);
|
||||
|
||||
Point {
|
||||
x: u,
|
||||
y: v,
|
||||
t: t,
|
||||
z: z,
|
||||
_marker: PhantomData
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// Attempts to cast this as a prime order element, failing if it's
|
||||
/// not in the prime order subgroup.
|
||||
pub fn as_prime_order(&self, params: &E::Params) -> Option<Point<E, PrimeOrder>> {
|
||||
if self.mul(E::Fs::char(), params) == Point::zero() {
|
||||
Some(convert_subgroup(self))
|
||||
} else {
|
||||
None
|
||||
}
|
||||
}
|
||||
|
||||
pub fn zero() -> Self {
|
||||
Point {
|
||||
x: E::Fr::zero(),
|
||||
y: E::Fr::one(),
|
||||
t: E::Fr::zero(),
|
||||
z: E::Fr::one(),
|
||||
_marker: PhantomData
|
||||
}
|
||||
}
|
||||
|
||||
pub fn into_xy(&self) -> (E::Fr, E::Fr)
|
||||
{
|
||||
let zinv = self.z.inverse().unwrap();
|
||||
|
||||
let mut x = self.x;
|
||||
x.mul_assign(&zinv);
|
||||
|
||||
let mut y = self.y;
|
||||
y.mul_assign(&zinv);
|
||||
|
||||
(x, y)
|
||||
}
|
||||
|
||||
#[must_use]
|
||||
pub fn negate(&self) -> Self {
|
||||
let mut p = self.clone();
|
||||
|
||||
p.x.negate();
|
||||
p.t.negate();
|
||||
|
||||
p
|
||||
}
|
||||
|
||||
#[must_use]
|
||||
pub fn double(&self, _: &E::Params) -> Self {
|
||||
// See "Twisted Edwards Curves Revisited"
|
||||
// Huseyin Hisil, Kenneth Koon-Ho Wong, Gary Carter, and Ed Dawson
|
||||
// Section 3.3
|
||||
// http://hyperelliptic.org/EFD/g1p/auto-twisted-extended.html#doubling-dbl-2008-hwcd
|
||||
|
||||
// A = X1^2
|
||||
let mut a = self.x;
|
||||
a.square();
|
||||
|
||||
// B = Y1^2
|
||||
let mut b = self.y;
|
||||
b.square();
|
||||
|
||||
// C = 2*Z1^2
|
||||
let mut c = self.z;
|
||||
c.square();
|
||||
c.double();
|
||||
|
||||
// D = a*A
|
||||
// = -A
|
||||
let mut d = a;
|
||||
d.negate();
|
||||
|
||||
// E = (X1+Y1)^2 - A - B
|
||||
let mut e = self.x;
|
||||
e.add_assign(&self.y);
|
||||
e.square();
|
||||
e.add_assign(&d); // -A = D
|
||||
e.sub_assign(&b);
|
||||
|
||||
// G = D+B
|
||||
let mut g = d;
|
||||
g.add_assign(&b);
|
||||
|
||||
// F = G-C
|
||||
let mut f = g;
|
||||
f.sub_assign(&c);
|
||||
|
||||
// H = D-B
|
||||
let mut h = d;
|
||||
h.sub_assign(&b);
|
||||
|
||||
// X3 = E*F
|
||||
let mut x3 = e;
|
||||
x3.mul_assign(&f);
|
||||
|
||||
// Y3 = G*H
|
||||
let mut y3 = g;
|
||||
y3.mul_assign(&h);
|
||||
|
||||
// T3 = E*H
|
||||
let mut t3 = e;
|
||||
t3.mul_assign(&h);
|
||||
|
||||
// Z3 = F*G
|
||||
let mut z3 = f;
|
||||
z3.mul_assign(&g);
|
||||
|
||||
Point {
|
||||
x: x3,
|
||||
y: y3,
|
||||
t: t3,
|
||||
z: z3,
|
||||
_marker: PhantomData
|
||||
}
|
||||
}
|
||||
|
||||
#[must_use]
|
||||
pub fn add(&self, other: &Self, params: &E::Params) -> Self
|
||||
{
|
||||
// See "Twisted Edwards Curves Revisited"
|
||||
// Huseyin Hisil, Kenneth Koon-Ho Wong, Gary Carter, and Ed Dawson
|
||||
// 3.1 Unified Addition in E^e
|
||||
|
||||
// A = x1 * x2
|
||||
let mut a = self.x;
|
||||
a.mul_assign(&other.x);
|
||||
|
||||
// B = y1 * y2
|
||||
let mut b = self.y;
|
||||
b.mul_assign(&other.y);
|
||||
|
||||
// C = d * t1 * t2
|
||||
let mut c = params.edwards_d().clone();
|
||||
c.mul_assign(&self.t);
|
||||
c.mul_assign(&other.t);
|
||||
|
||||
// D = z1 * z2
|
||||
let mut d = self.z;
|
||||
d.mul_assign(&other.z);
|
||||
|
||||
// H = B - aA
|
||||
// = B + A
|
||||
let mut h = b;
|
||||
h.add_assign(&a);
|
||||
|
||||
// E = (x1 + y1) * (x2 + y2) - A - B
|
||||
// = (x1 + y1) * (x2 + y2) - H
|
||||
let mut e = self.x;
|
||||
e.add_assign(&self.y);
|
||||
{
|
||||
let mut tmp = other.x;
|
||||
tmp.add_assign(&other.y);
|
||||
e.mul_assign(&tmp);
|
||||
}
|
||||
e.sub_assign(&h);
|
||||
|
||||
// F = D - C
|
||||
let mut f = d;
|
||||
f.sub_assign(&c);
|
||||
|
||||
// G = D + C
|
||||
let mut g = d;
|
||||
g.add_assign(&c);
|
||||
|
||||
// x3 = E * F
|
||||
let mut x3 = e;
|
||||
x3.mul_assign(&f);
|
||||
|
||||
// y3 = G * H
|
||||
let mut y3 = g;
|
||||
y3.mul_assign(&h);
|
||||
|
||||
// t3 = E * H
|
||||
let mut t3 = e;
|
||||
t3.mul_assign(&h);
|
||||
|
||||
// z3 = F * G
|
||||
let mut z3 = f;
|
||||
z3.mul_assign(&g);
|
||||
|
||||
Point {
|
||||
x: x3,
|
||||
y: y3,
|
||||
t: t3,
|
||||
z: z3,
|
||||
_marker: PhantomData
|
||||
}
|
||||
}
|
||||
|
||||
#[must_use]
|
||||
pub fn mul<S: Into<<E::Fs as PrimeField>::Repr>>(
|
||||
&self,
|
||||
scalar: S,
|
||||
params: &E::Params
|
||||
) -> Self
|
||||
{
|
||||
// Standard double-and-add scalar multiplication
|
||||
|
||||
let mut res = Self::zero();
|
||||
|
||||
for b in BitIterator::new(scalar.into()) {
|
||||
res = res.double(params);
|
||||
|
||||
if b {
|
||||
res = res.add(self, params);
|
||||
}
|
||||
}
|
||||
|
||||
res
|
||||
}
|
||||
}
|
1232
sapling-crypto/src/jubjub/fs.rs
Normal file
1232
sapling-crypto/src/jubjub/fs.rs
Normal file
File diff suppressed because it is too large
Load Diff
435
sapling-crypto/src/jubjub/mod.rs
Normal file
435
sapling-crypto/src/jubjub/mod.rs
Normal file
@@ -0,0 +1,435 @@
|
||||
//! Jubjub is a twisted Edwards curve defined over the BLS12-381 scalar
|
||||
//! field, Fr. It takes the form `-x^2 + y^2 = 1 + dx^2y^2` with
|
||||
//! `d = -(10240/10241)`. It is birationally equivalent to a Montgomery
|
||||
//! curve of the form `y^2 = x^3 + Ax^2 + x` with `A = 40962`. This
|
||||
//! value `A` is the smallest integer choice such that:
|
||||
//!
|
||||
//! * `(A - 2) / 4` is a small integer (`10240`).
|
||||
//! * `A^2 - 4` is quadratic nonresidue.
|
||||
//! * The group order of the curve and its quadratic twist has a large
|
||||
//! prime factor.
|
||||
//!
|
||||
//! Jubjub has `s = 0x0e7db4ea6533afa906673b0101343b00a6682093ccc81082d0970e5ed6f72cb7`
|
||||
//! as the prime subgroup order, with cofactor 8. (The twist has
|
||||
//! cofactor 4.)
|
||||
//!
|
||||
//! It is a complete twisted Edwards curve, so the equivalence with
|
||||
//! the Montgomery curve forms a group isomorphism, allowing points
|
||||
//! to be freely converted between the two forms.
|
||||
|
||||
use pairing::{
|
||||
Engine,
|
||||
Field,
|
||||
PrimeField,
|
||||
SqrtField
|
||||
};
|
||||
|
||||
use group_hash::group_hash;
|
||||
|
||||
use constants;
|
||||
|
||||
use pairing::bls12_381::{
|
||||
Bls12,
|
||||
Fr
|
||||
};
|
||||
|
||||
/// This is an implementation of the twisted Edwards Jubjub curve.
|
||||
pub mod edwards;
|
||||
|
||||
/// This is an implementation of the birationally equivalent
|
||||
/// Montgomery curve.
|
||||
pub mod montgomery;
|
||||
|
||||
/// This is an implementation of the scalar field for Jubjub.
|
||||
pub mod fs;
|
||||
|
||||
#[cfg(test)]
|
||||
pub mod tests;
|
||||
|
||||
/// Point of unknown order.
|
||||
pub enum Unknown { }
|
||||
|
||||
/// Point of prime order.
|
||||
pub enum PrimeOrder { }
|
||||
|
||||
/// Fixed generators of the Jubjub curve of unknown
|
||||
/// exponent.
|
||||
#[derive(Copy, Clone)]
|
||||
pub enum FixedGenerators {
|
||||
/// The prover will demonstrate knowledge of discrete log
|
||||
/// with respect to this base when they are constructing
|
||||
/// a proof, in order to authorize proof construction.
|
||||
ProofGenerationKey = 0,
|
||||
|
||||
/// The note commitment is randomized over this generator.
|
||||
NoteCommitmentRandomness = 1,
|
||||
|
||||
/// The node commitment is randomized again by the position
|
||||
/// in order to supply the nullifier computation with a
|
||||
/// unique input w.r.t. the note being spent, to prevent
|
||||
/// Faerie gold attacks.
|
||||
NullifierPosition = 2,
|
||||
|
||||
/// The value commitment is used to check balance between
|
||||
/// inputs and outputs. The value is placed over this
|
||||
/// generator.
|
||||
ValueCommitmentValue = 3,
|
||||
/// The value commitment is randomized over this generator,
|
||||
/// for privacy.
|
||||
ValueCommitmentRandomness = 4,
|
||||
|
||||
/// The spender proves discrete log with respect to this
|
||||
/// base at spend time.
|
||||
SpendingKeyGenerator = 5,
|
||||
|
||||
Max = 6
|
||||
}
|
||||
|
||||
pub trait ToUniform {
|
||||
fn to_uniform(digest: &[u8]) -> Self;
|
||||
}
|
||||
|
||||
/// This is an extension to the pairing Engine trait which
|
||||
/// offers a scalar field for the embedded curve (Jubjub)
|
||||
/// and some pre-computed parameters.
|
||||
pub trait JubjubEngine: Engine {
|
||||
/// The scalar field of the Jubjub curve
|
||||
type Fs: PrimeField + SqrtField + ToUniform;
|
||||
/// The parameters of Jubjub and the Sapling protocol
|
||||
type Params: JubjubParams<Self>;
|
||||
}
|
||||
|
||||
/// The pre-computed parameters for Jubjub, including curve
|
||||
/// constants and various limits and window tables.
|
||||
pub trait JubjubParams<E: JubjubEngine>: Sized {
|
||||
/// The `d` constant of the twisted Edwards curve.
|
||||
fn edwards_d(&self) -> &E::Fr;
|
||||
/// The `A` constant of the birationally equivalent Montgomery curve.
|
||||
fn montgomery_a(&self) -> &E::Fr;
|
||||
/// The `A` constant, doubled.
|
||||
fn montgomery_2a(&self) -> &E::Fr;
|
||||
/// The scaling factor used for conversion from the Montgomery form.
|
||||
fn scale(&self) -> &E::Fr;
|
||||
/// Returns the generators (for each segment) used in all Pedersen commitments.
|
||||
fn pedersen_hash_generators(&self) -> &[edwards::Point<E, PrimeOrder>];
|
||||
/// Returns the exp table for Pedersen hashes.
|
||||
fn pedersen_hash_exp_table(&self) -> &[Vec<Vec<edwards::Point<E, PrimeOrder>>>];
|
||||
/// Returns the maximum number of chunks per segment of the Pedersen hash.
|
||||
fn pedersen_hash_chunks_per_generator(&self) -> usize;
|
||||
/// Returns the pre-computed window tables [-4, 3, 2, 1, 1, 2, 3, 4] of different
|
||||
/// magnitudes of the Pedersen hash segment generators.
|
||||
fn pedersen_circuit_generators(&self) -> &[Vec<Vec<(E::Fr, E::Fr)>>];
|
||||
|
||||
/// Returns the number of chunks needed to represent a full scalar during fixed-base
|
||||
/// exponentiation.
|
||||
fn fixed_base_chunks_per_generator(&self) -> usize;
|
||||
/// Returns a fixed generator.
|
||||
fn generator(&self, base: FixedGenerators) -> &edwards::Point<E, PrimeOrder>;
|
||||
/// Returns a window table [0, 1, ..., 8] for different magnitudes of some
|
||||
/// fixed generator.
|
||||
fn circuit_generators(&self, FixedGenerators) -> &[Vec<(E::Fr, E::Fr)>];
|
||||
/// Returns the window size for exponentiation of Pedersen hash generators
|
||||
/// outside the circuit
|
||||
fn pedersen_hash_exp_window_size() -> u32;
|
||||
}
|
||||
|
||||
impl JubjubEngine for Bls12 {
|
||||
type Fs = self::fs::Fs;
|
||||
type Params = JubjubBls12;
|
||||
}
|
||||
|
||||
pub struct JubjubBls12 {
|
||||
edwards_d: Fr,
|
||||
montgomery_a: Fr,
|
||||
montgomery_2a: Fr,
|
||||
scale: Fr,
|
||||
|
||||
pedersen_hash_generators: Vec<edwards::Point<Bls12, PrimeOrder>>,
|
||||
pedersen_hash_exp: Vec<Vec<Vec<edwards::Point<Bls12, PrimeOrder>>>>,
|
||||
pedersen_circuit_generators: Vec<Vec<Vec<(Fr, Fr)>>>,
|
||||
|
||||
fixed_base_generators: Vec<edwards::Point<Bls12, PrimeOrder>>,
|
||||
fixed_base_circuit_generators: Vec<Vec<Vec<(Fr, Fr)>>>,
|
||||
}
|
||||
|
||||
impl JubjubParams<Bls12> for JubjubBls12 {
|
||||
fn edwards_d(&self) -> &Fr { &self.edwards_d }
|
||||
fn montgomery_a(&self) -> &Fr { &self.montgomery_a }
|
||||
fn montgomery_2a(&self) -> &Fr { &self.montgomery_2a }
|
||||
fn scale(&self) -> &Fr { &self.scale }
|
||||
fn pedersen_hash_generators(&self) -> &[edwards::Point<Bls12, PrimeOrder>] {
|
||||
&self.pedersen_hash_generators
|
||||
}
|
||||
fn pedersen_hash_exp_table(&self) -> &[Vec<Vec<edwards::Point<Bls12, PrimeOrder>>>] {
|
||||
&self.pedersen_hash_exp
|
||||
}
|
||||
fn pedersen_hash_chunks_per_generator(&self) -> usize {
|
||||
63
|
||||
}
|
||||
fn fixed_base_chunks_per_generator(&self) -> usize {
|
||||
84
|
||||
}
|
||||
fn pedersen_circuit_generators(&self) -> &[Vec<Vec<(Fr, Fr)>>] {
|
||||
&self.pedersen_circuit_generators
|
||||
}
|
||||
fn generator(&self, base: FixedGenerators) -> &edwards::Point<Bls12, PrimeOrder>
|
||||
{
|
||||
&self.fixed_base_generators[base as usize]
|
||||
}
|
||||
fn circuit_generators(&self, base: FixedGenerators) -> &[Vec<(Fr, Fr)>]
|
||||
{
|
||||
&self.fixed_base_circuit_generators[base as usize][..]
|
||||
}
|
||||
fn pedersen_hash_exp_window_size() -> u32 {
|
||||
8
|
||||
}
|
||||
}
|
||||
|
||||
impl JubjubBls12 {
|
||||
pub fn new() -> Self {
|
||||
let montgomery_a = Fr::from_str("40962").unwrap();
|
||||
let mut montgomery_2a = montgomery_a;
|
||||
montgomery_2a.double();
|
||||
|
||||
let mut tmp_params = JubjubBls12 {
|
||||
// d = -(10240/10241)
|
||||
edwards_d: Fr::from_str("19257038036680949359750312669786877991949435402254120286184196891950884077233").unwrap(),
|
||||
// A = 40962
|
||||
montgomery_a: montgomery_a,
|
||||
// 2A = 2.A
|
||||
montgomery_2a: montgomery_2a,
|
||||
// scaling factor = sqrt(4 / (a - d))
|
||||
scale: Fr::from_str("17814886934372412843466061268024708274627479829237077604635722030778476050649").unwrap(),
|
||||
|
||||
// We'll initialize these below
|
||||
pedersen_hash_generators: vec![],
|
||||
pedersen_hash_exp: vec![],
|
||||
pedersen_circuit_generators: vec![],
|
||||
fixed_base_generators: vec![],
|
||||
fixed_base_circuit_generators: vec![],
|
||||
};
|
||||
|
||||
fn find_group_hash<E: JubjubEngine>(
|
||||
m: &[u8],
|
||||
personalization: &[u8; 8],
|
||||
params: &E::Params
|
||||
) -> edwards::Point<E, PrimeOrder>
|
||||
{
|
||||
let mut tag = m.to_vec();
|
||||
let i = tag.len();
|
||||
tag.push(0u8);
|
||||
|
||||
loop {
|
||||
let gh = group_hash(
|
||||
&tag,
|
||||
personalization,
|
||||
params
|
||||
);
|
||||
|
||||
// We don't want to overflow and start reusing generators
|
||||
assert!(tag[i] != u8::max_value());
|
||||
tag[i] += 1;
|
||||
|
||||
if let Some(gh) = gh {
|
||||
break gh;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Create the bases for the Pedersen hashes
|
||||
{
|
||||
let mut pedersen_hash_generators = vec![];
|
||||
|
||||
for m in 0..5 {
|
||||
use byteorder::{WriteBytesExt, LittleEndian};
|
||||
|
||||
let mut segment_number = [0u8; 4];
|
||||
(&mut segment_number[0..4]).write_u32::<LittleEndian>(m).unwrap();
|
||||
|
||||
pedersen_hash_generators.push(
|
||||
find_group_hash(
|
||||
&segment_number,
|
||||
constants::PEDERSEN_HASH_GENERATORS_PERSONALIZATION,
|
||||
&tmp_params
|
||||
)
|
||||
);
|
||||
}
|
||||
|
||||
// Check for duplicates, far worse than spec inconsistencies!
|
||||
for (i, p1) in pedersen_hash_generators.iter().enumerate() {
|
||||
if p1 == &edwards::Point::zero() {
|
||||
panic!("Neutral element!");
|
||||
}
|
||||
|
||||
for p2 in pedersen_hash_generators.iter().skip(i+1) {
|
||||
if p1 == p2 {
|
||||
panic!("Duplicate generator!");
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
tmp_params.pedersen_hash_generators = pedersen_hash_generators;
|
||||
}
|
||||
|
||||
// Create the exp table for the Pedersen hash generators
|
||||
{
|
||||
let mut pedersen_hash_exp = vec![];
|
||||
|
||||
for g in &tmp_params.pedersen_hash_generators {
|
||||
let mut g = g.clone();
|
||||
|
||||
let window = JubjubBls12::pedersen_hash_exp_window_size();
|
||||
|
||||
let mut tables = vec![];
|
||||
|
||||
let mut num_bits = 0;
|
||||
while num_bits <= fs::Fs::NUM_BITS {
|
||||
let mut table = Vec::with_capacity(1 << window);
|
||||
|
||||
let mut base = edwards::Point::zero();
|
||||
|
||||
for _ in 0..(1 << window) {
|
||||
table.push(base.clone());
|
||||
base = base.add(&g, &tmp_params);
|
||||
}
|
||||
|
||||
tables.push(table);
|
||||
num_bits += window;
|
||||
|
||||
for _ in 0..window {
|
||||
g = g.double(&tmp_params);
|
||||
}
|
||||
}
|
||||
|
||||
pedersen_hash_exp.push(tables);
|
||||
}
|
||||
|
||||
tmp_params.pedersen_hash_exp = pedersen_hash_exp;
|
||||
}
|
||||
|
||||
// Create the bases for other parts of the protocol
|
||||
{
|
||||
let mut fixed_base_generators = vec![edwards::Point::zero(); FixedGenerators::Max as usize];
|
||||
|
||||
fixed_base_generators[FixedGenerators::ProofGenerationKey as usize] =
|
||||
find_group_hash(&[], constants::PROOF_GENERATION_KEY_BASE_GENERATOR_PERSONALIZATION, &tmp_params);
|
||||
|
||||
fixed_base_generators[FixedGenerators::NoteCommitmentRandomness as usize] =
|
||||
find_group_hash(b"r", constants::PEDERSEN_HASH_GENERATORS_PERSONALIZATION, &tmp_params);
|
||||
|
||||
fixed_base_generators[FixedGenerators::NullifierPosition as usize] =
|
||||
find_group_hash(&[], constants::NULLIFIER_POSITION_IN_TREE_GENERATOR_PERSONALIZATION, &tmp_params);
|
||||
|
||||
fixed_base_generators[FixedGenerators::ValueCommitmentValue as usize] =
|
||||
find_group_hash(b"v", constants::VALUE_COMMITMENT_GENERATOR_PERSONALIZATION, &tmp_params);
|
||||
|
||||
fixed_base_generators[FixedGenerators::ValueCommitmentRandomness as usize] =
|
||||
find_group_hash(b"r", constants::VALUE_COMMITMENT_GENERATOR_PERSONALIZATION, &tmp_params);
|
||||
|
||||
fixed_base_generators[FixedGenerators::SpendingKeyGenerator as usize] =
|
||||
find_group_hash(&[], constants::SPENDING_KEY_GENERATOR_PERSONALIZATION, &tmp_params);
|
||||
|
||||
// Check for duplicates, far worse than spec inconsistencies!
|
||||
for (i, p1) in fixed_base_generators.iter().enumerate() {
|
||||
if p1 == &edwards::Point::zero() {
|
||||
panic!("Neutral element!");
|
||||
}
|
||||
|
||||
for p2 in fixed_base_generators.iter().skip(i+1) {
|
||||
if p1 == p2 {
|
||||
panic!("Duplicate generator!");
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
tmp_params.fixed_base_generators = fixed_base_generators;
|
||||
}
|
||||
|
||||
// Create the 2-bit window table lookups for each 4-bit
|
||||
// "chunk" in each segment of the Pedersen hash
|
||||
{
|
||||
let mut pedersen_circuit_generators = vec![];
|
||||
|
||||
// Process each segment
|
||||
for mut gen in tmp_params.pedersen_hash_generators.iter().cloned() {
|
||||
let mut gen = montgomery::Point::from_edwards(&gen, &tmp_params);
|
||||
let mut windows = vec![];
|
||||
for _ in 0..tmp_params.pedersen_hash_chunks_per_generator() {
|
||||
// Create (x, y) coeffs for this chunk
|
||||
let mut coeffs = vec![];
|
||||
let mut g = gen.clone();
|
||||
|
||||
// coeffs = g, g*2, g*3, g*4
|
||||
for _ in 0..4 {
|
||||
coeffs.push(g.into_xy().expect("cannot produce O"));
|
||||
g = g.add(&gen, &tmp_params);
|
||||
}
|
||||
windows.push(coeffs);
|
||||
|
||||
// Our chunks are separated by 2 bits to prevent overlap.
|
||||
for _ in 0..4 {
|
||||
gen = gen.double(&tmp_params);
|
||||
}
|
||||
}
|
||||
pedersen_circuit_generators.push(windows);
|
||||
}
|
||||
|
||||
tmp_params.pedersen_circuit_generators = pedersen_circuit_generators;
|
||||
}
|
||||
|
||||
// Create the 3-bit window table lookups for fixed-base
|
||||
// exp of each base in the protocol.
|
||||
{
|
||||
let mut fixed_base_circuit_generators = vec![];
|
||||
|
||||
for mut gen in tmp_params.fixed_base_generators.iter().cloned() {
|
||||
let mut windows = vec![];
|
||||
for _ in 0..tmp_params.fixed_base_chunks_per_generator() {
|
||||
let mut coeffs = vec![(Fr::zero(), Fr::one())];
|
||||
let mut g = gen.clone();
|
||||
for _ in 0..7 {
|
||||
coeffs.push(g.into_xy());
|
||||
g = g.add(&gen, &tmp_params);
|
||||
}
|
||||
windows.push(coeffs);
|
||||
|
||||
// gen = gen * 8
|
||||
gen = g;
|
||||
}
|
||||
fixed_base_circuit_generators.push(windows);
|
||||
}
|
||||
|
||||
tmp_params.fixed_base_circuit_generators = fixed_base_circuit_generators;
|
||||
}
|
||||
|
||||
tmp_params
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_jubjub_bls12() {
|
||||
let params = JubjubBls12::new();
|
||||
|
||||
tests::test_suite::<Bls12>(¶ms);
|
||||
|
||||
let test_repr = hex!("9d12b88b08dcbef8a11ee0712d94cb236ee2f4ca17317075bfafc82ce3139d31");
|
||||
let p = edwards::Point::<Bls12, _>::read(&test_repr[..], ¶ms).unwrap();
|
||||
let q = edwards::Point::<Bls12, _>::get_for_y(
|
||||
Fr::from_str("22440861827555040311190986994816762244378363690614952020532787748720529117853").unwrap(),
|
||||
false,
|
||||
¶ms
|
||||
).unwrap();
|
||||
|
||||
assert!(p == q);
|
||||
|
||||
// Same thing, but sign bit set
|
||||
let test_repr = hex!("9d12b88b08dcbef8a11ee0712d94cb236ee2f4ca17317075bfafc82ce3139db1");
|
||||
let p = edwards::Point::<Bls12, _>::read(&test_repr[..], ¶ms).unwrap();
|
||||
let q = edwards::Point::<Bls12, _>::get_for_y(
|
||||
Fr::from_str("22440861827555040311190986994816762244378363690614952020532787748720529117853").unwrap(),
|
||||
true,
|
||||
¶ms
|
||||
).unwrap();
|
||||
|
||||
assert!(p == q);
|
||||
}
|
358
sapling-crypto/src/jubjub/montgomery.rs
Normal file
358
sapling-crypto/src/jubjub/montgomery.rs
Normal file
@@ -0,0 +1,358 @@
|
||||
use pairing::{
|
||||
Field,
|
||||
SqrtField,
|
||||
PrimeField,
|
||||
PrimeFieldRepr,
|
||||
BitIterator
|
||||
};
|
||||
|
||||
use super::{
|
||||
JubjubEngine,
|
||||
JubjubParams,
|
||||
Unknown,
|
||||
PrimeOrder,
|
||||
edwards
|
||||
};
|
||||
|
||||
use rand::{
|
||||
Rng
|
||||
};
|
||||
|
||||
use std::marker::PhantomData;
|
||||
|
||||
// Represents the affine point (X, Y)
|
||||
pub struct Point<E: JubjubEngine, Subgroup> {
|
||||
x: E::Fr,
|
||||
y: E::Fr,
|
||||
infinity: bool,
|
||||
_marker: PhantomData<Subgroup>
|
||||
}
|
||||
|
||||
fn convert_subgroup<E: JubjubEngine, S1, S2>(from: &Point<E, S1>) -> Point<E, S2>
|
||||
{
|
||||
Point {
|
||||
x: from.x,
|
||||
y: from.y,
|
||||
infinity: from.infinity,
|
||||
_marker: PhantomData
|
||||
}
|
||||
}
|
||||
|
||||
impl<E: JubjubEngine> From<Point<E, PrimeOrder>> for Point<E, Unknown>
|
||||
{
|
||||
fn from(p: Point<E, PrimeOrder>) -> Point<E, Unknown>
|
||||
{
|
||||
convert_subgroup(&p)
|
||||
}
|
||||
}
|
||||
|
||||
impl<E: JubjubEngine, Subgroup> Clone for Point<E, Subgroup>
|
||||
{
|
||||
fn clone(&self) -> Self {
|
||||
convert_subgroup(self)
|
||||
}
|
||||
}
|
||||
|
||||
impl<E: JubjubEngine, Subgroup> PartialEq for Point<E, Subgroup> {
|
||||
fn eq(&self, other: &Point<E, Subgroup>) -> bool {
|
||||
match (self.infinity, other.infinity) {
|
||||
(true, true) => true,
|
||||
(true, false) | (false, true) => false,
|
||||
(false, false) => {
|
||||
self.x == other.x && self.y == other.y
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl<E: JubjubEngine> Point<E, Unknown> {
|
||||
pub fn get_for_x(x: E::Fr, sign: bool, params: &E::Params) -> Option<Self>
|
||||
{
|
||||
// Given an x on the curve, y = sqrt(x^3 + A*x^2 + x)
|
||||
|
||||
let mut x2 = x;
|
||||
x2.square();
|
||||
|
||||
let mut rhs = x2;
|
||||
rhs.mul_assign(params.montgomery_a());
|
||||
rhs.add_assign(&x);
|
||||
x2.mul_assign(&x);
|
||||
rhs.add_assign(&x2);
|
||||
|
||||
match rhs.sqrt() {
|
||||
Some(mut y) => {
|
||||
if y.into_repr().is_odd() != sign {
|
||||
y.negate();
|
||||
}
|
||||
|
||||
return Some(Point {
|
||||
x: x,
|
||||
y: y,
|
||||
infinity: false,
|
||||
_marker: PhantomData
|
||||
})
|
||||
},
|
||||
None => None
|
||||
}
|
||||
}
|
||||
|
||||
/// This guarantees the point is in the prime order subgroup
|
||||
#[must_use]
|
||||
pub fn mul_by_cofactor(&self, params: &E::Params) -> Point<E, PrimeOrder>
|
||||
{
|
||||
let tmp = self.double(params)
|
||||
.double(params)
|
||||
.double(params);
|
||||
|
||||
convert_subgroup(&tmp)
|
||||
}
|
||||
|
||||
pub fn rand<R: Rng>(rng: &mut R, params: &E::Params) -> Self
|
||||
{
|
||||
loop {
|
||||
let x: E::Fr = rng.gen();
|
||||
|
||||
match Self::get_for_x(x, rng.gen(), params) {
|
||||
Some(p) => {
|
||||
return p
|
||||
},
|
||||
None => {}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl<E: JubjubEngine, Subgroup> Point<E, Subgroup> {
|
||||
/// Convert from an Edwards point
|
||||
pub fn from_edwards(
|
||||
e: &edwards::Point<E, Subgroup>,
|
||||
params: &E::Params
|
||||
) -> Self
|
||||
{
|
||||
let (x, y) = e.into_xy();
|
||||
|
||||
if y == E::Fr::one() {
|
||||
// The only solution for y = 1 is x = 0. (0, 1) is
|
||||
// the neutral element, so we map this to the point
|
||||
// at infinity.
|
||||
|
||||
Point::zero()
|
||||
} else {
|
||||
// The map from a twisted Edwards curve is defined as
|
||||
// (x, y) -> (u, v) where
|
||||
// u = (1 + y) / (1 - y)
|
||||
// v = u / x
|
||||
//
|
||||
// This mapping is not defined for y = 1 and for x = 0.
|
||||
//
|
||||
// We have that y != 1 above. If x = 0, the only
|
||||
// solutions for y are 1 (contradiction) or -1.
|
||||
if x.is_zero() {
|
||||
// (0, -1) is the point of order two which is not
|
||||
// the neutral element, so we map it to (0, 0) which is
|
||||
// the only affine point of order 2.
|
||||
|
||||
Point {
|
||||
x: E::Fr::zero(),
|
||||
y: E::Fr::zero(),
|
||||
infinity: false,
|
||||
_marker: PhantomData
|
||||
}
|
||||
} else {
|
||||
// The mapping is defined as above.
|
||||
//
|
||||
// (x, y) -> (u, v) where
|
||||
// u = (1 + y) / (1 - y)
|
||||
// v = u / x
|
||||
|
||||
let mut u = E::Fr::one();
|
||||
u.add_assign(&y);
|
||||
{
|
||||
let mut tmp = E::Fr::one();
|
||||
tmp.sub_assign(&y);
|
||||
u.mul_assign(&tmp.inverse().unwrap())
|
||||
}
|
||||
|
||||
let mut v = u;
|
||||
v.mul_assign(&x.inverse().unwrap());
|
||||
|
||||
// Scale it into the correct curve constants
|
||||
v.mul_assign(params.scale());
|
||||
|
||||
Point {
|
||||
x: u,
|
||||
y: v,
|
||||
infinity: false,
|
||||
_marker: PhantomData
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// Attempts to cast this as a prime order element, failing if it's
|
||||
/// not in the prime order subgroup.
|
||||
pub fn as_prime_order(&self, params: &E::Params) -> Option<Point<E, PrimeOrder>> {
|
||||
if self.mul(E::Fs::char(), params) == Point::zero() {
|
||||
Some(convert_subgroup(self))
|
||||
} else {
|
||||
None
|
||||
}
|
||||
}
|
||||
|
||||
pub fn zero() -> Self {
|
||||
Point {
|
||||
x: E::Fr::zero(),
|
||||
y: E::Fr::zero(),
|
||||
infinity: true,
|
||||
_marker: PhantomData
|
||||
}
|
||||
}
|
||||
|
||||
pub fn into_xy(&self) -> Option<(E::Fr, E::Fr)>
|
||||
{
|
||||
if self.infinity {
|
||||
None
|
||||
} else {
|
||||
Some((self.x, self.y))
|
||||
}
|
||||
}
|
||||
|
||||
#[must_use]
|
||||
pub fn negate(&self) -> Self {
|
||||
let mut p = self.clone();
|
||||
|
||||
p.y.negate();
|
||||
|
||||
p
|
||||
}
|
||||
|
||||
#[must_use]
|
||||
pub fn double(&self, params: &E::Params) -> Self {
|
||||
if self.infinity {
|
||||
return Point::zero();
|
||||
}
|
||||
|
||||
// (0, 0) is the point of order 2. Doubling
|
||||
// produces the point at infinity.
|
||||
if self.y == E::Fr::zero() {
|
||||
return Point::zero();
|
||||
}
|
||||
|
||||
// This is a standard affine point doubling formula
|
||||
// See 4.3.2 The group law for Weierstrass curves
|
||||
// Montgomery curves and the Montgomery Ladder
|
||||
// Daniel J. Bernstein and Tanja Lange
|
||||
|
||||
let mut delta = E::Fr::one();
|
||||
{
|
||||
let mut tmp = params.montgomery_a().clone();
|
||||
tmp.mul_assign(&self.x);
|
||||
tmp.double();
|
||||
delta.add_assign(&tmp);
|
||||
}
|
||||
{
|
||||
let mut tmp = self.x;
|
||||
tmp.square();
|
||||
delta.add_assign(&tmp);
|
||||
tmp.double();
|
||||
delta.add_assign(&tmp);
|
||||
}
|
||||
{
|
||||
let mut tmp = self.y;
|
||||
tmp.double();
|
||||
delta.mul_assign(&tmp.inverse().expect("y is nonzero so this must be nonzero"));
|
||||
}
|
||||
|
||||
let mut x3 = delta;
|
||||
x3.square();
|
||||
x3.sub_assign(params.montgomery_a());
|
||||
x3.sub_assign(&self.x);
|
||||
x3.sub_assign(&self.x);
|
||||
|
||||
let mut y3 = x3;
|
||||
y3.sub_assign(&self.x);
|
||||
y3.mul_assign(&delta);
|
||||
y3.add_assign(&self.y);
|
||||
y3.negate();
|
||||
|
||||
Point {
|
||||
x: x3,
|
||||
y: y3,
|
||||
infinity: false,
|
||||
_marker: PhantomData
|
||||
}
|
||||
}
|
||||
|
||||
#[must_use]
|
||||
pub fn add(&self, other: &Self, params: &E::Params) -> Self
|
||||
{
|
||||
// This is a standard affine point addition formula
|
||||
// See 4.3.2 The group law for Weierstrass curves
|
||||
// Montgomery curves and the Montgomery Ladder
|
||||
// Daniel J. Bernstein and Tanja Lange
|
||||
|
||||
match (self.infinity, other.infinity) {
|
||||
(true, true) => Point::zero(),
|
||||
(true, false) => other.clone(),
|
||||
(false, true) => self.clone(),
|
||||
(false, false) => {
|
||||
if self.x == other.x {
|
||||
if self.y == other.y {
|
||||
self.double(params)
|
||||
} else {
|
||||
Point::zero()
|
||||
}
|
||||
} else {
|
||||
let mut delta = other.y;
|
||||
delta.sub_assign(&self.y);
|
||||
{
|
||||
let mut tmp = other.x;
|
||||
tmp.sub_assign(&self.x);
|
||||
delta.mul_assign(&tmp.inverse().expect("self.x != other.x, so this must be nonzero"));
|
||||
}
|
||||
|
||||
let mut x3 = delta;
|
||||
x3.square();
|
||||
x3.sub_assign(params.montgomery_a());
|
||||
x3.sub_assign(&self.x);
|
||||
x3.sub_assign(&other.x);
|
||||
|
||||
let mut y3 = x3;
|
||||
y3.sub_assign(&self.x);
|
||||
y3.mul_assign(&delta);
|
||||
y3.add_assign(&self.y);
|
||||
y3.negate();
|
||||
|
||||
Point {
|
||||
x: x3,
|
||||
y: y3,
|
||||
infinity: false,
|
||||
_marker: PhantomData
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[must_use]
|
||||
pub fn mul<S: Into<<E::Fs as PrimeField>::Repr>>(
|
||||
&self,
|
||||
scalar: S,
|
||||
params: &E::Params
|
||||
) -> Self
|
||||
{
|
||||
// Standard double-and-add scalar multiplication
|
||||
|
||||
let mut res = Self::zero();
|
||||
|
||||
for b in BitIterator::new(scalar.into()) {
|
||||
res = res.double(params);
|
||||
|
||||
if b {
|
||||
res = res.add(self, params);
|
||||
}
|
||||
}
|
||||
|
||||
res
|
||||
}
|
||||
}
|
416
sapling-crypto/src/jubjub/tests.rs
Normal file
416
sapling-crypto/src/jubjub/tests.rs
Normal file
@@ -0,0 +1,416 @@
|
||||
use super::{
|
||||
JubjubEngine,
|
||||
JubjubParams,
|
||||
PrimeOrder,
|
||||
montgomery,
|
||||
edwards
|
||||
};
|
||||
|
||||
use pairing::{
|
||||
Field,
|
||||
PrimeField,
|
||||
PrimeFieldRepr,
|
||||
SqrtField,
|
||||
LegendreSymbol
|
||||
};
|
||||
|
||||
use rand::{XorShiftRng, SeedableRng, Rand};
|
||||
|
||||
pub fn test_suite<E: JubjubEngine>(params: &E::Params) {
|
||||
test_back_and_forth::<E>(params);
|
||||
test_jubjub_params::<E>(params);
|
||||
test_rand::<E>(params);
|
||||
test_get_for::<E>(params);
|
||||
test_identities::<E>(params);
|
||||
test_addition_associativity::<E>(params);
|
||||
test_order::<E>(params);
|
||||
test_mul_associativity::<E>(params);
|
||||
test_loworder::<E>(params);
|
||||
test_read_write::<E>(params);
|
||||
}
|
||||
|
||||
fn is_on_mont_curve<E: JubjubEngine, P: JubjubParams<E>>(
|
||||
x: E::Fr,
|
||||
y: E::Fr,
|
||||
params: &P
|
||||
) -> bool
|
||||
{
|
||||
let mut lhs = y;
|
||||
lhs.square();
|
||||
|
||||
let mut x2 = x;
|
||||
x2.square();
|
||||
|
||||
let mut x3 = x2;
|
||||
x3.mul_assign(&x);
|
||||
|
||||
let mut rhs = x2;
|
||||
rhs.mul_assign(params.montgomery_a());
|
||||
rhs.add_assign(&x);
|
||||
rhs.add_assign(&x3);
|
||||
|
||||
lhs == rhs
|
||||
}
|
||||
|
||||
fn is_on_twisted_edwards_curve<E: JubjubEngine, P: JubjubParams<E>>(
|
||||
x: E::Fr,
|
||||
y: E::Fr,
|
||||
params: &P
|
||||
) -> bool
|
||||
{
|
||||
let mut x2 = x;
|
||||
x2.square();
|
||||
|
||||
let mut y2 = y;
|
||||
y2.square();
|
||||
|
||||
// -x^2 + y^2
|
||||
let mut lhs = y2;
|
||||
lhs.sub_assign(&x2);
|
||||
|
||||
// 1 + d x^2 y^2
|
||||
let mut rhs = y2;
|
||||
rhs.mul_assign(&x2);
|
||||
rhs.mul_assign(params.edwards_d());
|
||||
rhs.add_assign(&E::Fr::one());
|
||||
|
||||
lhs == rhs
|
||||
}
|
||||
|
||||
fn test_loworder<E: JubjubEngine>(params: &E::Params) {
|
||||
let rng = &mut XorShiftRng::from_seed([0x3dbe6259, 0x8d313d76, 0x3237db17, 0xe5bc0654]);
|
||||
let inf = montgomery::Point::zero();
|
||||
|
||||
// try to find a point of order 8
|
||||
let p = loop {
|
||||
let r = montgomery::Point::<E, _>::rand(rng, params).mul(E::Fs::char(), params);
|
||||
|
||||
let r2 = r.double(params);
|
||||
let r4 = r2.double(params);
|
||||
let r8 = r4.double(params);
|
||||
|
||||
if r2 != inf && r4 != inf && r8 == inf {
|
||||
break r;
|
||||
}
|
||||
};
|
||||
|
||||
let mut loworder_points = vec![];
|
||||
{
|
||||
let mut tmp = p.clone();
|
||||
|
||||
for _ in 0..8 {
|
||||
assert!(!loworder_points.contains(&tmp));
|
||||
loworder_points.push(tmp.clone());
|
||||
tmp = tmp.add(&p, params);
|
||||
}
|
||||
}
|
||||
assert!(loworder_points[7] == inf);
|
||||
}
|
||||
|
||||
fn test_mul_associativity<E: JubjubEngine>(params: &E::Params) {
|
||||
use self::edwards::Point;
|
||||
let rng = &mut XorShiftRng::from_seed([0x3dbe6259, 0x8d313d76, 0x3237db17, 0xe5bc0654]);
|
||||
|
||||
for _ in 0..100 {
|
||||
// Pick a random point and multiply it by the cofactor
|
||||
let base = Point::<E, _>::rand(rng, params).mul_by_cofactor(params);
|
||||
|
||||
let mut a = E::Fs::rand(rng);
|
||||
let b = E::Fs::rand(rng);
|
||||
let c = E::Fs::rand(rng);
|
||||
|
||||
let res1 = base.mul(a, params).mul(b, params).mul(c, params);
|
||||
let res2 = base.mul(b, params).mul(c, params).mul(a, params);
|
||||
let res3 = base.mul(c, params).mul(a, params).mul(b, params);
|
||||
a.mul_assign(&b);
|
||||
a.mul_assign(&c);
|
||||
let res4 = base.mul(a, params);
|
||||
|
||||
assert!(res1 == res2);
|
||||
assert!(res2 == res3);
|
||||
assert!(res3 == res4);
|
||||
|
||||
let (x, y) = res1.into_xy();
|
||||
assert!(is_on_twisted_edwards_curve(x, y, params));
|
||||
|
||||
let (x, y) = res2.into_xy();
|
||||
assert!(is_on_twisted_edwards_curve(x, y, params));
|
||||
|
||||
let (x, y) = res3.into_xy();
|
||||
assert!(is_on_twisted_edwards_curve(x, y, params));
|
||||
}
|
||||
}
|
||||
|
||||
fn test_order<E: JubjubEngine>(params: &E::Params) {
|
||||
use self::edwards::Point;
|
||||
let rng = &mut XorShiftRng::from_seed([0x3dbe6259, 0x8d313d76, 0x3237db17, 0xe5bc0654]);
|
||||
|
||||
// The neutral element is in the prime order subgroup.
|
||||
assert!(Point::<E, PrimeOrder>::zero().as_prime_order(params).is_some());
|
||||
|
||||
for _ in 0..50 {
|
||||
// Pick a random point and multiply it by the cofactor
|
||||
let base = Point::<E, _>::rand(rng, params).mul_by_cofactor(params);
|
||||
|
||||
// Any point multiplied by the cofactor will be in the prime
|
||||
// order subgroup
|
||||
assert!(base.as_prime_order(params).is_some());
|
||||
}
|
||||
|
||||
// It's very likely that at least one out of 50 random points on the curve
|
||||
// is not in the prime order subgroup.
|
||||
let mut at_least_one_not_in_prime_order_subgroup = false;
|
||||
for _ in 0..50 {
|
||||
// Pick a random point.
|
||||
let base = Point::<E, _>::rand(rng, params);
|
||||
|
||||
at_least_one_not_in_prime_order_subgroup |= base.as_prime_order(params).is_none();
|
||||
}
|
||||
assert!(at_least_one_not_in_prime_order_subgroup);
|
||||
}
|
||||
|
||||
fn test_addition_associativity<E: JubjubEngine>(params: &E::Params) {
|
||||
let rng = &mut XorShiftRng::from_seed([0x3dbe6259, 0x8d313d76, 0x3237db17, 0xe5bc0654]);
|
||||
|
||||
for _ in 0..1000 {
|
||||
use self::montgomery::Point;
|
||||
|
||||
let a = Point::<E, _>::rand(rng, params);
|
||||
let b = Point::<E, _>::rand(rng, params);
|
||||
let c = Point::<E, _>::rand(rng, params);
|
||||
|
||||
assert!(a.add(&b, ¶ms).add(&c, ¶ms) == c.add(&a, ¶ms).add(&b, ¶ms));
|
||||
}
|
||||
|
||||
for _ in 0..1000 {
|
||||
use self::edwards::Point;
|
||||
|
||||
let a = Point::<E, _>::rand(rng, params);
|
||||
let b = Point::<E, _>::rand(rng, params);
|
||||
let c = Point::<E, _>::rand(rng, params);
|
||||
|
||||
assert!(a.add(&b, ¶ms).add(&c, ¶ms) == c.add(&a, ¶ms).add(&b, ¶ms));
|
||||
}
|
||||
}
|
||||
|
||||
fn test_identities<E: JubjubEngine>(params: &E::Params) {
|
||||
let rng = &mut XorShiftRng::from_seed([0x3dbe6259, 0x8d313d76, 0x3237db17, 0xe5bc0654]);
|
||||
|
||||
{
|
||||
use self::edwards::Point;
|
||||
|
||||
let z = Point::<E, PrimeOrder>::zero();
|
||||
assert!(z.double(¶ms) == z);
|
||||
assert!(z.negate() == z);
|
||||
|
||||
for _ in 0..100 {
|
||||
let r = Point::<E, _>::rand(rng, params);
|
||||
|
||||
assert!(r.add(&Point::zero(), ¶ms) == r);
|
||||
assert!(r.add(&r.negate(), ¶ms) == Point::zero());
|
||||
}
|
||||
}
|
||||
|
||||
{
|
||||
use self::montgomery::Point;
|
||||
|
||||
let z = Point::<E, PrimeOrder>::zero();
|
||||
assert!(z.double(¶ms) == z);
|
||||
assert!(z.negate() == z);
|
||||
|
||||
for _ in 0..100 {
|
||||
let r = Point::<E, _>::rand(rng, params);
|
||||
|
||||
assert!(r.add(&Point::zero(), ¶ms) == r);
|
||||
assert!(r.add(&r.negate(), ¶ms) == Point::zero());
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn test_get_for<E: JubjubEngine>(params: &E::Params) {
|
||||
let rng = &mut XorShiftRng::from_seed([0x3dbe6259, 0x8d313d76, 0x3237db17, 0xe5bc0654]);
|
||||
|
||||
for _ in 0..1000 {
|
||||
let y = E::Fr::rand(rng);
|
||||
let sign = bool::rand(rng);
|
||||
|
||||
if let Some(mut p) = edwards::Point::<E, _>::get_for_y(y, sign, params) {
|
||||
assert!(p.into_xy().0.into_repr().is_odd() == sign);
|
||||
p = p.negate();
|
||||
assert!(
|
||||
edwards::Point::<E, _>::get_for_y(y, !sign, params).unwrap()
|
||||
==
|
||||
p
|
||||
);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn test_read_write<E: JubjubEngine>(params: &E::Params) {
|
||||
let rng = &mut XorShiftRng::from_seed([0x3dbe6259, 0x8d313d76, 0x3237db17, 0xe5bc0654]);
|
||||
|
||||
for _ in 0..1000 {
|
||||
let e = edwards::Point::<E, _>::rand(rng, params);
|
||||
|
||||
let mut v = vec![];
|
||||
e.write(&mut v).unwrap();
|
||||
|
||||
let e2 = edwards::Point::read(&v[..], params).unwrap();
|
||||
|
||||
assert!(e == e2);
|
||||
}
|
||||
}
|
||||
|
||||
fn test_rand<E: JubjubEngine>(params: &E::Params) {
|
||||
let rng = &mut XorShiftRng::from_seed([0x3dbe6259, 0x8d313d76, 0x3237db17, 0xe5bc0654]);
|
||||
|
||||
for _ in 0..1000 {
|
||||
let p = montgomery::Point::<E, _>::rand(rng, params);
|
||||
let e = edwards::Point::<E, _>::rand(rng, params);
|
||||
|
||||
{
|
||||
let (x, y) = p.into_xy().unwrap();
|
||||
assert!(is_on_mont_curve(x, y, params));
|
||||
}
|
||||
|
||||
{
|
||||
let (x, y) = e.into_xy();
|
||||
assert!(is_on_twisted_edwards_curve(x, y, params));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn test_back_and_forth<E: JubjubEngine>(params: &E::Params) {
|
||||
let rng = &mut XorShiftRng::from_seed([0x5dbe6259, 0x8d313d76, 0x3237db17, 0xe5bc0654]);
|
||||
|
||||
for _ in 0..1000 {
|
||||
let s = E::Fs::rand(rng);
|
||||
let edwards_p1 = edwards::Point::<E, _>::rand(rng, params);
|
||||
let mont_p1 = montgomery::Point::from_edwards(&edwards_p1, params);
|
||||
let mont_p2 = montgomery::Point::<E, _>::rand(rng, params);
|
||||
let edwards_p2 = edwards::Point::from_montgomery(&mont_p2, params);
|
||||
|
||||
let mont = mont_p1.add(&mont_p2, params).mul(s, params);
|
||||
let edwards = edwards_p1.add(&edwards_p2, params).mul(s, params);
|
||||
|
||||
assert!(
|
||||
montgomery::Point::from_edwards(&edwards, params) == mont
|
||||
);
|
||||
|
||||
assert!(
|
||||
edwards::Point::from_montgomery(&mont, params) == edwards
|
||||
);
|
||||
}
|
||||
}
|
||||
|
||||
fn test_jubjub_params<E: JubjubEngine>(params: &E::Params) {
|
||||
// a = -1
|
||||
let mut a = E::Fr::one();
|
||||
a.negate();
|
||||
|
||||
{
|
||||
// Check that 2A is consistent with A
|
||||
let mut tmp = *params.montgomery_a();
|
||||
tmp.double();
|
||||
|
||||
assert_eq!(&tmp, params.montgomery_2a());
|
||||
}
|
||||
|
||||
{
|
||||
// The twisted Edwards addition law is complete when d is nonsquare
|
||||
// and a is square.
|
||||
|
||||
assert!(params.edwards_d().legendre() == LegendreSymbol::QuadraticNonResidue);
|
||||
assert!(a.legendre() == LegendreSymbol::QuadraticResidue);
|
||||
}
|
||||
|
||||
{
|
||||
// Other convenient sanity checks regarding d
|
||||
|
||||
// tmp = d
|
||||
let mut tmp = *params.edwards_d();
|
||||
|
||||
// 1 / d is nonsquare
|
||||
assert!(tmp.inverse().unwrap().legendre() == LegendreSymbol::QuadraticNonResidue);
|
||||
|
||||
// tmp = -d
|
||||
tmp.negate();
|
||||
|
||||
// -d is nonsquare
|
||||
assert!(tmp.legendre() == LegendreSymbol::QuadraticNonResidue);
|
||||
|
||||
// 1 / -d is nonsquare
|
||||
assert!(tmp.inverse().unwrap().legendre() == LegendreSymbol::QuadraticNonResidue);
|
||||
}
|
||||
|
||||
{
|
||||
// Check that A^2 - 4 is nonsquare:
|
||||
let mut tmp = params.montgomery_a().clone();
|
||||
tmp.square();
|
||||
tmp.sub_assign(&E::Fr::from_str("4").unwrap());
|
||||
assert!(tmp.legendre() == LegendreSymbol::QuadraticNonResidue);
|
||||
}
|
||||
|
||||
{
|
||||
// Check that A - 2 is nonsquare:
|
||||
let mut tmp = params.montgomery_a().clone();
|
||||
tmp.sub_assign(&E::Fr::from_str("2").unwrap());
|
||||
assert!(tmp.legendre() == LegendreSymbol::QuadraticNonResidue);
|
||||
}
|
||||
|
||||
{
|
||||
// Check the validity of the scaling factor
|
||||
let mut tmp = a;
|
||||
tmp.sub_assign(¶ms.edwards_d());
|
||||
tmp = tmp.inverse().unwrap();
|
||||
tmp.mul_assign(&E::Fr::from_str("4").unwrap());
|
||||
tmp = tmp.sqrt().unwrap();
|
||||
assert_eq!(&tmp, params.scale());
|
||||
}
|
||||
|
||||
{
|
||||
// Check that the number of windows per generator
|
||||
// in the Pedersen hash does not allow for collisions
|
||||
|
||||
let mut cur = E::Fs::one().into_repr();
|
||||
|
||||
let mut max = E::Fs::char();
|
||||
{
|
||||
max.sub_noborrow(&E::Fs::one().into_repr());
|
||||
max.div2();
|
||||
}
|
||||
|
||||
let mut pacc = E::Fs::zero().into_repr();
|
||||
let mut nacc = E::Fs::char();
|
||||
|
||||
for _ in 0..params.pedersen_hash_chunks_per_generator()
|
||||
{
|
||||
// tmp = cur * 4
|
||||
let mut tmp = cur;
|
||||
tmp.mul2();
|
||||
tmp.mul2();
|
||||
|
||||
pacc.add_nocarry(&tmp);
|
||||
nacc.sub_noborrow(&tmp);
|
||||
|
||||
assert!(pacc < max);
|
||||
assert!(pacc < nacc);
|
||||
|
||||
// cur = cur * 16
|
||||
for _ in 0..4 {
|
||||
cur.mul2();
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
{
|
||||
// Check that the number of windows for fixed-base
|
||||
// scalar multiplication is sufficient for all scalars.
|
||||
|
||||
assert!(params.fixed_base_chunks_per_generator() * 3 >= E::Fs::NUM_BITS as usize);
|
||||
|
||||
// ... and that it's *just* efficient enough.
|
||||
|
||||
assert!((params.fixed_base_chunks_per_generator() - 1) * 3 < E::Fs::NUM_BITS as usize);
|
||||
}
|
||||
}
|
22
sapling-crypto/src/lib.rs
Normal file
22
sapling-crypto/src/lib.rs
Normal file
@@ -0,0 +1,22 @@
|
||||
extern crate pairing;
|
||||
extern crate bellman;
|
||||
extern crate blake2_rfc;
|
||||
extern crate digest;
|
||||
extern crate rand;
|
||||
extern crate byteorder;
|
||||
|
||||
#[cfg(test)]
|
||||
#[macro_use]
|
||||
extern crate hex_literal;
|
||||
|
||||
#[cfg(test)]
|
||||
extern crate crypto;
|
||||
|
||||
pub mod jubjub;
|
||||
pub mod group_hash;
|
||||
pub mod circuit;
|
||||
pub mod pedersen_hash;
|
||||
pub mod primitives;
|
||||
pub mod constants;
|
||||
pub mod redjubjub;
|
||||
pub mod util;
|
103
sapling-crypto/src/pedersen_hash.rs
Normal file
103
sapling-crypto/src/pedersen_hash.rs
Normal file
@@ -0,0 +1,103 @@
|
||||
use jubjub::*;
|
||||
use pairing::*;
|
||||
|
||||
#[derive(Copy, Clone)]
|
||||
pub enum Personalization {
|
||||
NoteCommitment,
|
||||
MerkleTree(usize)
|
||||
}
|
||||
|
||||
impl Personalization {
|
||||
pub fn get_bits(&self) -> Vec<bool> {
|
||||
match *self {
|
||||
Personalization::NoteCommitment =>
|
||||
vec![true, true, true, true, true, true],
|
||||
Personalization::MerkleTree(num) => {
|
||||
assert!(num < 63);
|
||||
|
||||
(0..6).map(|i| (num >> i) & 1 == 1).collect()
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
pub fn pedersen_hash<E, I>(
|
||||
personalization: Personalization,
|
||||
bits: I,
|
||||
params: &E::Params
|
||||
) -> edwards::Point<E, PrimeOrder>
|
||||
where I: IntoIterator<Item=bool>,
|
||||
E: JubjubEngine
|
||||
{
|
||||
let mut bits = personalization.get_bits().into_iter().chain(bits.into_iter());
|
||||
|
||||
let mut result = edwards::Point::zero();
|
||||
let mut generators = params.pedersen_hash_exp_table().iter();
|
||||
|
||||
loop {
|
||||
let mut acc = E::Fs::zero();
|
||||
let mut cur = E::Fs::one();
|
||||
let mut chunks_remaining = params.pedersen_hash_chunks_per_generator();
|
||||
let mut encountered_bits = false;
|
||||
|
||||
// Grab three bits from the input
|
||||
while let Some(a) = bits.next() {
|
||||
encountered_bits = true;
|
||||
|
||||
let b = bits.next().unwrap_or(false);
|
||||
let c = bits.next().unwrap_or(false);
|
||||
|
||||
// Start computing this portion of the scalar
|
||||
let mut tmp = cur;
|
||||
if a {
|
||||
tmp.add_assign(&cur);
|
||||
}
|
||||
cur.double(); // 2^1 * cur
|
||||
if b {
|
||||
tmp.add_assign(&cur);
|
||||
}
|
||||
|
||||
// conditionally negate
|
||||
if c {
|
||||
tmp.negate();
|
||||
}
|
||||
|
||||
acc.add_assign(&tmp);
|
||||
|
||||
chunks_remaining -= 1;
|
||||
|
||||
if chunks_remaining == 0 {
|
||||
break;
|
||||
} else {
|
||||
cur.double(); // 2^2 * cur
|
||||
cur.double(); // 2^3 * cur
|
||||
cur.double(); // 2^4 * cur
|
||||
}
|
||||
}
|
||||
|
||||
if !encountered_bits {
|
||||
break;
|
||||
}
|
||||
|
||||
let mut table: &[Vec<edwards::Point<E, _>>] = &generators.next().expect("we don't have enough generators");
|
||||
let window = JubjubBls12::pedersen_hash_exp_window_size();
|
||||
let window_mask = (1 << window) - 1;
|
||||
|
||||
let mut acc = acc.into_repr();
|
||||
|
||||
let mut tmp = edwards::Point::zero();
|
||||
|
||||
while !acc.is_zero() {
|
||||
let i = (acc.as_ref()[0] & window_mask) as usize;
|
||||
|
||||
tmp = tmp.add(&table[0][i], params);
|
||||
|
||||
acc.shr(window);
|
||||
table = &table[1..];
|
||||
}
|
||||
|
||||
result = result.add(&tmp, params);
|
||||
}
|
||||
|
||||
result
|
||||
}
|
258
sapling-crypto/src/primitives/mod.rs
Normal file
258
sapling-crypto/src/primitives/mod.rs
Normal file
@@ -0,0 +1,258 @@
|
||||
use pairing::{
|
||||
Field,
|
||||
PrimeField,
|
||||
PrimeFieldRepr
|
||||
};
|
||||
|
||||
use constants;
|
||||
|
||||
use group_hash::group_hash;
|
||||
|
||||
use pedersen_hash::{
|
||||
pedersen_hash,
|
||||
Personalization
|
||||
};
|
||||
|
||||
use byteorder::{
|
||||
LittleEndian,
|
||||
WriteBytesExt
|
||||
};
|
||||
|
||||
use jubjub::{
|
||||
JubjubEngine,
|
||||
JubjubParams,
|
||||
edwards,
|
||||
PrimeOrder,
|
||||
FixedGenerators
|
||||
};
|
||||
|
||||
use blake2_rfc::blake2s::Blake2s;
|
||||
|
||||
#[derive(Clone)]
|
||||
pub struct ValueCommitment<E: JubjubEngine> {
|
||||
pub value: u64,
|
||||
pub randomness: E::Fs
|
||||
}
|
||||
|
||||
impl<E: JubjubEngine> ValueCommitment<E> {
|
||||
pub fn cm(
|
||||
&self,
|
||||
params: &E::Params
|
||||
) -> edwards::Point<E, PrimeOrder>
|
||||
{
|
||||
params.generator(FixedGenerators::ValueCommitmentValue)
|
||||
.mul(self.value, params)
|
||||
.add(
|
||||
¶ms.generator(FixedGenerators::ValueCommitmentRandomness)
|
||||
.mul(self.randomness, params),
|
||||
params
|
||||
)
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Clone)]
|
||||
pub struct ProofGenerationKey<E: JubjubEngine> {
|
||||
pub ak: edwards::Point<E, PrimeOrder>,
|
||||
pub nsk: E::Fs
|
||||
}
|
||||
|
||||
impl<E: JubjubEngine> ProofGenerationKey<E> {
|
||||
pub fn into_viewing_key(&self, params: &E::Params) -> ViewingKey<E> {
|
||||
ViewingKey {
|
||||
ak: self.ak.clone(),
|
||||
nk: params.generator(FixedGenerators::ProofGenerationKey)
|
||||
.mul(self.nsk, params)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
pub struct ViewingKey<E: JubjubEngine> {
|
||||
pub ak: edwards::Point<E, PrimeOrder>,
|
||||
pub nk: edwards::Point<E, PrimeOrder>
|
||||
}
|
||||
|
||||
impl<E: JubjubEngine> ViewingKey<E> {
|
||||
pub fn rk(
|
||||
&self,
|
||||
ar: E::Fs,
|
||||
params: &E::Params
|
||||
) -> edwards::Point<E, PrimeOrder> {
|
||||
self.ak.add(
|
||||
¶ms.generator(FixedGenerators::SpendingKeyGenerator)
|
||||
.mul(ar, params),
|
||||
params
|
||||
)
|
||||
}
|
||||
|
||||
pub fn ivk(&self) -> E::Fs {
|
||||
let mut preimage = [0; 64];
|
||||
|
||||
self.ak.write(&mut preimage[0..32]).unwrap();
|
||||
self.nk.write(&mut preimage[32..64]).unwrap();
|
||||
|
||||
let mut h = Blake2s::with_params(32, &[], &[], constants::CRH_IVK_PERSONALIZATION);
|
||||
h.update(&preimage);
|
||||
let mut h = h.finalize().as_ref().to_vec();
|
||||
|
||||
// Drop the most significant five bits, so it can be interpreted as a scalar.
|
||||
h[31] &= 0b0000_0111;
|
||||
|
||||
let mut e = <E::Fs as PrimeField>::Repr::default();
|
||||
e.read_le(&h[..]).unwrap();
|
||||
|
||||
E::Fs::from_repr(e).expect("should be a valid scalar")
|
||||
}
|
||||
|
||||
pub fn into_payment_address(
|
||||
&self,
|
||||
diversifier: Diversifier,
|
||||
params: &E::Params
|
||||
) -> Option<PaymentAddress<E>>
|
||||
{
|
||||
diversifier.g_d(params).map(|g_d| {
|
||||
let pk_d = g_d.mul(self.ivk(), params);
|
||||
|
||||
PaymentAddress {
|
||||
pk_d: pk_d,
|
||||
diversifier: diversifier
|
||||
}
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Copy, Clone)]
|
||||
pub struct Diversifier(pub [u8; 11]);
|
||||
|
||||
impl Diversifier {
|
||||
pub fn g_d<E: JubjubEngine>(
|
||||
&self,
|
||||
params: &E::Params
|
||||
) -> Option<edwards::Point<E, PrimeOrder>>
|
||||
{
|
||||
group_hash::<E>(&self.0, constants::KEY_DIVERSIFICATION_PERSONALIZATION, params)
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Clone)]
|
||||
pub struct PaymentAddress<E: JubjubEngine> {
|
||||
pub pk_d: edwards::Point<E, PrimeOrder>,
|
||||
pub diversifier: Diversifier
|
||||
}
|
||||
|
||||
impl<E: JubjubEngine> PaymentAddress<E> {
|
||||
pub fn g_d(
|
||||
&self,
|
||||
params: &E::Params
|
||||
) -> Option<edwards::Point<E, PrimeOrder>>
|
||||
{
|
||||
self.diversifier.g_d(params)
|
||||
}
|
||||
|
||||
pub fn create_note(
|
||||
&self,
|
||||
value: u64,
|
||||
randomness: E::Fs,
|
||||
params: &E::Params
|
||||
) -> Option<Note<E>>
|
||||
{
|
||||
self.g_d(params).map(|g_d| {
|
||||
Note {
|
||||
value: value,
|
||||
r: randomness,
|
||||
g_d: g_d,
|
||||
pk_d: self.pk_d.clone()
|
||||
}
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
pub struct Note<E: JubjubEngine> {
|
||||
/// The value of the note
|
||||
pub value: u64,
|
||||
/// The diversified base of the address, GH(d)
|
||||
pub g_d: edwards::Point<E, PrimeOrder>,
|
||||
/// The public key of the address, g_d^ivk
|
||||
pub pk_d: edwards::Point<E, PrimeOrder>,
|
||||
/// The commitment randomness
|
||||
pub r: E::Fs
|
||||
}
|
||||
|
||||
impl<E: JubjubEngine> Note<E> {
|
||||
pub fn uncommitted() -> E::Fr {
|
||||
// The smallest u-coordinate that is not on the curve
|
||||
// is one.
|
||||
// TODO: This should be relocated to JubjubEngine as
|
||||
// it's specific to the curve we're using, not all
|
||||
// twisted edwards curves.
|
||||
E::Fr::one()
|
||||
}
|
||||
|
||||
/// Computes the note commitment, returning the full point.
|
||||
fn cm_full_point(&self, params: &E::Params) -> edwards::Point<E, PrimeOrder>
|
||||
{
|
||||
// Calculate the note contents, as bytes
|
||||
let mut note_contents = vec![];
|
||||
|
||||
// Writing the value in little endian
|
||||
(&mut note_contents).write_u64::<LittleEndian>(self.value).unwrap();
|
||||
|
||||
// Write g_d
|
||||
self.g_d.write(&mut note_contents).unwrap();
|
||||
|
||||
// Write pk_d
|
||||
self.pk_d.write(&mut note_contents).unwrap();
|
||||
|
||||
assert_eq!(note_contents.len(), 32 + 32 + 8);
|
||||
|
||||
// Compute the Pedersen hash of the note contents
|
||||
let hash_of_contents = pedersen_hash(
|
||||
Personalization::NoteCommitment,
|
||||
note_contents.into_iter()
|
||||
.flat_map(|byte| {
|
||||
(0..8).map(move |i| ((byte >> i) & 1) == 1)
|
||||
}),
|
||||
params
|
||||
);
|
||||
|
||||
// Compute final commitment
|
||||
params.generator(FixedGenerators::NoteCommitmentRandomness)
|
||||
.mul(self.r, params)
|
||||
.add(&hash_of_contents, params)
|
||||
}
|
||||
|
||||
/// Computes the nullifier given the viewing key and
|
||||
/// note position
|
||||
pub fn nf(
|
||||
&self,
|
||||
viewing_key: &ViewingKey<E>,
|
||||
position: u64,
|
||||
params: &E::Params
|
||||
) -> Vec<u8>
|
||||
{
|
||||
// Compute rho = cm + position.G
|
||||
let rho = self
|
||||
.cm_full_point(params)
|
||||
.add(
|
||||
¶ms.generator(FixedGenerators::NullifierPosition)
|
||||
.mul(position, params),
|
||||
params
|
||||
);
|
||||
|
||||
// Compute nf = BLAKE2s(nk | rho)
|
||||
let mut nf_preimage = [0u8; 64];
|
||||
viewing_key.nk.write(&mut nf_preimage[0..32]).unwrap();
|
||||
rho.write(&mut nf_preimage[32..64]).unwrap();
|
||||
let mut h = Blake2s::with_params(32, &[], &[], constants::PRF_NF_PERSONALIZATION);
|
||||
h.update(&nf_preimage);
|
||||
|
||||
h.finalize().as_ref().to_vec()
|
||||
}
|
||||
|
||||
/// Computes the note commitment
|
||||
pub fn cm(&self, params: &E::Params) -> E::Fr
|
||||
{
|
||||
// The commitment is in the prime order subgroup, so mapping the
|
||||
// commitment to the x-coordinate is an injective encoding.
|
||||
self.cm_full_point(params).into_xy().0
|
||||
}
|
||||
}
|
343
sapling-crypto/src/redjubjub.rs
Normal file
343
sapling-crypto/src/redjubjub.rs
Normal file
@@ -0,0 +1,343 @@
|
||||
//! Implementation of RedJubjub, a specialization of RedDSA to the Jubjub curve.
|
||||
//! See section 5.4.6 of the Sapling protocol specification.
|
||||
|
||||
use pairing::{Field, PrimeField, PrimeFieldRepr};
|
||||
use rand::{Rng, Rand};
|
||||
use std::io::{self, Read, Write};
|
||||
|
||||
use jubjub::{FixedGenerators, JubjubEngine, JubjubParams, Unknown, edwards::Point};
|
||||
use util::{hash_to_scalar};
|
||||
|
||||
fn read_scalar<E: JubjubEngine, R: Read>(reader: R) -> io::Result<E::Fs> {
|
||||
let mut s_repr = <E::Fs as PrimeField>::Repr::default();
|
||||
s_repr.read_le(reader)?;
|
||||
|
||||
match E::Fs::from_repr(s_repr) {
|
||||
Ok(s) => Ok(s),
|
||||
Err(_) => Err(io::Error::new(
|
||||
io::ErrorKind::InvalidInput,
|
||||
"scalar is not in field",
|
||||
)),
|
||||
}
|
||||
}
|
||||
|
||||
fn write_scalar<E: JubjubEngine, W: Write>(s: &E::Fs, writer: W) -> io::Result<()> {
|
||||
s.into_repr().write_le(writer)
|
||||
}
|
||||
|
||||
fn h_star<E: JubjubEngine>(a: &[u8], b: &[u8]) -> E::Fs {
|
||||
hash_to_scalar::<E>(b"Zcash_RedJubjubH", a, b)
|
||||
}
|
||||
|
||||
#[derive(Copy, Clone)]
|
||||
pub struct Signature {
|
||||
rbar: [u8; 32],
|
||||
sbar: [u8; 32],
|
||||
}
|
||||
|
||||
pub struct PrivateKey<E: JubjubEngine>(pub E::Fs);
|
||||
|
||||
pub struct PublicKey<E: JubjubEngine>(pub Point<E, Unknown>);
|
||||
|
||||
impl Signature {
|
||||
pub fn read<R: Read>(mut reader: R) -> io::Result<Self> {
|
||||
let mut rbar = [0u8; 32];
|
||||
let mut sbar = [0u8; 32];
|
||||
reader.read_exact(&mut rbar)?;
|
||||
reader.read_exact(&mut sbar)?;
|
||||
Ok(Signature { rbar, sbar })
|
||||
}
|
||||
|
||||
pub fn write<W: Write>(&self, mut writer: W) -> io::Result<()> {
|
||||
writer.write_all(&self.rbar)?;
|
||||
writer.write_all(&self.sbar)
|
||||
}
|
||||
}
|
||||
|
||||
impl<E: JubjubEngine> PrivateKey<E> {
|
||||
pub fn randomize(&self, alpha: E::Fs) -> Self {
|
||||
let mut tmp = self.0;
|
||||
tmp.add_assign(&alpha);
|
||||
PrivateKey(tmp)
|
||||
}
|
||||
|
||||
pub fn read<R: Read>(reader: R) -> io::Result<Self> {
|
||||
let pk = read_scalar::<E, R>(reader)?;
|
||||
Ok(PrivateKey(pk))
|
||||
}
|
||||
|
||||
pub fn write<W: Write>(&self, writer: W) -> io::Result<()> {
|
||||
write_scalar::<E, W>(&self.0, writer)
|
||||
}
|
||||
|
||||
pub fn sign<R: Rng>(
|
||||
&self,
|
||||
msg: &[u8],
|
||||
rng: &mut R,
|
||||
p_g: FixedGenerators,
|
||||
params: &E::Params,
|
||||
) -> Signature {
|
||||
// T = (l_H + 128) bits of randomness
|
||||
// For H*, l_H = 512 bits
|
||||
let mut t = [0u8; 80];
|
||||
rng.fill_bytes(&mut t[..]);
|
||||
|
||||
// r = H*(T || M)
|
||||
let r = h_star::<E>(&t[..], msg);
|
||||
|
||||
// R = r . P_G
|
||||
let r_g = params.generator(p_g).mul(r, params);
|
||||
let mut rbar = [0u8; 32];
|
||||
r_g.write(&mut rbar[..])
|
||||
.expect("Jubjub points should serialize to 32 bytes");
|
||||
|
||||
// S = r + H*(Rbar || M) . sk
|
||||
let mut s = h_star::<E>(&rbar[..], msg);
|
||||
s.mul_assign(&self.0);
|
||||
s.add_assign(&r);
|
||||
let mut sbar = [0u8; 32];
|
||||
write_scalar::<E, &mut [u8]>(&s, &mut sbar[..])
|
||||
.expect("Jubjub scalars should serialize to 32 bytes");
|
||||
|
||||
Signature { rbar, sbar }
|
||||
}
|
||||
}
|
||||
|
||||
impl<E: JubjubEngine> PublicKey<E> {
|
||||
pub fn from_private(privkey: &PrivateKey<E>, p_g: FixedGenerators, params: &E::Params) -> Self {
|
||||
let res = params.generator(p_g).mul(privkey.0, params).into();
|
||||
PublicKey(res)
|
||||
}
|
||||
|
||||
pub fn randomize(&self, alpha: E::Fs, p_g: FixedGenerators, params: &E::Params) -> Self {
|
||||
let res: Point<E, Unknown> = params.generator(p_g).mul(alpha, params).into();
|
||||
let res = res.add(&self.0, params);
|
||||
PublicKey(res)
|
||||
}
|
||||
|
||||
pub fn read<R: Read>(reader: R, params: &E::Params) -> io::Result<Self> {
|
||||
let p = Point::read(reader, params)?;
|
||||
Ok(PublicKey(p))
|
||||
}
|
||||
|
||||
pub fn write<W: Write>(&self, writer: W) -> io::Result<()> {
|
||||
self.0.write(writer)
|
||||
}
|
||||
|
||||
pub fn verify(
|
||||
&self,
|
||||
msg: &[u8],
|
||||
sig: &Signature,
|
||||
p_g: FixedGenerators,
|
||||
params: &E::Params,
|
||||
) -> bool {
|
||||
// c = H*(Rbar || M)
|
||||
let c = h_star::<E>(&sig.rbar[..], msg);
|
||||
|
||||
// Signature checks:
|
||||
// R != invalid
|
||||
let r = match Point::read(&sig.rbar[..], params) {
|
||||
Ok(r) => r,
|
||||
Err(_) => return false,
|
||||
};
|
||||
// S < order(G)
|
||||
// (E::Fs guarantees its representation is in the field)
|
||||
let s = match read_scalar::<E, &[u8]>(&sig.sbar[..]) {
|
||||
Ok(s) => s,
|
||||
Err(_) => return false,
|
||||
};
|
||||
// 0 = h_G(-S . P_G + R + c . vk)
|
||||
self.0.mul(c, params).add(&r, params).add(
|
||||
¶ms.generator(p_g).mul(s, params).negate().into(),
|
||||
params
|
||||
).mul_by_cofactor(params).eq(&Point::zero())
|
||||
}
|
||||
}
|
||||
|
||||
pub struct BatchEntry<'a, E: JubjubEngine> {
|
||||
vk: PublicKey<E>,
|
||||
msg: &'a [u8],
|
||||
sig: Signature,
|
||||
}
|
||||
|
||||
// TODO: #82: This is a naive implementation currently,
|
||||
// and doesn't use multiexp.
|
||||
pub fn batch_verify<'a, E: JubjubEngine, R: Rng>(
|
||||
rng: &mut R,
|
||||
batch: &[BatchEntry<'a, E>],
|
||||
p_g: FixedGenerators,
|
||||
params: &E::Params,
|
||||
) -> bool
|
||||
{
|
||||
let mut acc = Point::<E, Unknown>::zero();
|
||||
|
||||
for entry in batch {
|
||||
let mut r = match Point::<E, Unknown>::read(&entry.sig.rbar[..], params) {
|
||||
Ok(r) => r,
|
||||
Err(_) => return false,
|
||||
};
|
||||
let mut s = match read_scalar::<E, &[u8]>(&entry.sig.sbar[..]) {
|
||||
Ok(s) => s,
|
||||
Err(_) => return false,
|
||||
};
|
||||
|
||||
let mut c = h_star::<E>(&entry.sig.rbar[..], entry.msg);
|
||||
|
||||
let z = E::Fs::rand(rng);
|
||||
|
||||
s.mul_assign(&z);
|
||||
s.negate();
|
||||
|
||||
r = r.mul(z, params);
|
||||
|
||||
c.mul_assign(&z);
|
||||
|
||||
acc = acc.add(&r, params);
|
||||
acc = acc.add(&entry.vk.0.mul(c, params), params);
|
||||
acc = acc.add(¶ms.generator(p_g).mul(s, params).into(), params);
|
||||
}
|
||||
|
||||
acc = acc.mul_by_cofactor(params).into();
|
||||
|
||||
acc.eq(&Point::zero())
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use pairing::bls12_381::Bls12;
|
||||
use rand::thread_rng;
|
||||
|
||||
use jubjub::{JubjubBls12, fs::Fs, edwards};
|
||||
|
||||
use super::*;
|
||||
|
||||
#[test]
|
||||
fn test_batch_verify() {
|
||||
let rng = &mut thread_rng();
|
||||
let params = &JubjubBls12::new();
|
||||
let p_g = FixedGenerators::SpendingKeyGenerator;
|
||||
|
||||
let sk1 = PrivateKey::<Bls12>(rng.gen());
|
||||
let vk1 = PublicKey::from_private(&sk1, p_g, params);
|
||||
let msg1 = b"Foo bar";
|
||||
let sig1 = sk1.sign(msg1, rng, p_g, params);
|
||||
assert!(vk1.verify(msg1, &sig1, p_g, params));
|
||||
|
||||
let sk2 = PrivateKey::<Bls12>(rng.gen());
|
||||
let vk2 = PublicKey::from_private(&sk2, p_g, params);
|
||||
let msg2 = b"Foo bar";
|
||||
let sig2 = sk2.sign(msg2, rng, p_g, params);
|
||||
assert!(vk2.verify(msg2, &sig2, p_g, params));
|
||||
|
||||
let mut batch = vec![
|
||||
BatchEntry { vk: vk1, msg: msg1, sig: sig1 },
|
||||
BatchEntry { vk: vk2, msg: msg2, sig: sig2 }
|
||||
];
|
||||
|
||||
assert!(batch_verify(rng, &batch, p_g, params));
|
||||
|
||||
batch[0].sig = sig2;
|
||||
|
||||
assert!(!batch_verify(rng, &batch, p_g, params));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn cofactor_check() {
|
||||
let rng = &mut thread_rng();
|
||||
let params = &JubjubBls12::new();
|
||||
let zero = edwards::Point::zero();
|
||||
let p_g = FixedGenerators::SpendingKeyGenerator;
|
||||
|
||||
// Get a point of order 8
|
||||
let p8 = loop {
|
||||
let r = edwards::Point::<Bls12, _>::rand(rng, params).mul(Fs::char(), params);
|
||||
|
||||
let r2 = r.double(params);
|
||||
let r4 = r2.double(params);
|
||||
let r8 = r4.double(params);
|
||||
|
||||
if r2 != zero && r4 != zero && r8 == zero {
|
||||
break r;
|
||||
}
|
||||
};
|
||||
|
||||
let sk = PrivateKey::<Bls12>(rng.gen());
|
||||
let vk = PublicKey::from_private(&sk, p_g, params);
|
||||
|
||||
// TODO: This test will need to change when #77 is fixed
|
||||
let msg = b"Foo bar";
|
||||
let sig = sk.sign(msg, rng, p_g, params);
|
||||
assert!(vk.verify(msg, &sig, p_g, params));
|
||||
|
||||
let vktorsion = PublicKey(vk.0.add(&p8, params));
|
||||
assert!(vktorsion.verify(msg, &sig, p_g, params));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn round_trip_serialization() {
|
||||
let rng = &mut thread_rng();
|
||||
let p_g = FixedGenerators::SpendingKeyGenerator;
|
||||
let params = &JubjubBls12::new();
|
||||
|
||||
for _ in 0..1000 {
|
||||
let sk = PrivateKey::<Bls12>(rng.gen());
|
||||
let vk = PublicKey::from_private(&sk, p_g, params);
|
||||
let msg = b"Foo bar";
|
||||
let sig = sk.sign(msg, rng, p_g, params);
|
||||
|
||||
let mut sk_bytes = [0u8; 32];
|
||||
let mut vk_bytes = [0u8; 32];
|
||||
let mut sig_bytes = [0u8; 64];
|
||||
sk.write(&mut sk_bytes[..]).unwrap();
|
||||
vk.write(&mut vk_bytes[..]).unwrap();
|
||||
sig.write(&mut sig_bytes[..]).unwrap();
|
||||
|
||||
let sk_2 = PrivateKey::<Bls12>::read(&sk_bytes[..]).unwrap();
|
||||
let vk_2 = PublicKey::from_private(&sk_2, p_g, params);
|
||||
let mut vk_2_bytes = [0u8; 32];
|
||||
vk_2.write(&mut vk_2_bytes[..]).unwrap();
|
||||
assert!(vk_bytes == vk_2_bytes);
|
||||
|
||||
let vk_2 = PublicKey::<Bls12>::read(&vk_bytes[..], params).unwrap();
|
||||
let sig_2 = Signature::read(&sig_bytes[..]).unwrap();
|
||||
assert!(vk.verify(msg, &sig_2, p_g, params));
|
||||
assert!(vk_2.verify(msg, &sig, p_g, params));
|
||||
assert!(vk_2.verify(msg, &sig_2, p_g, params));
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn random_signatures() {
|
||||
let rng = &mut thread_rng();
|
||||
let p_g = FixedGenerators::SpendingKeyGenerator;
|
||||
let params = &JubjubBls12::new();
|
||||
|
||||
for _ in 0..1000 {
|
||||
let sk = PrivateKey::<Bls12>(rng.gen());
|
||||
let vk = PublicKey::from_private(&sk, p_g, params);
|
||||
|
||||
let msg1 = b"Foo bar";
|
||||
let msg2 = b"Spam eggs";
|
||||
|
||||
let sig1 = sk.sign(msg1, rng, p_g, params);
|
||||
let sig2 = sk.sign(msg2, rng, p_g, params);
|
||||
|
||||
assert!(vk.verify(msg1, &sig1, p_g, params));
|
||||
assert!(vk.verify(msg2, &sig2, p_g, params));
|
||||
assert!(!vk.verify(msg1, &sig2, p_g, params));
|
||||
assert!(!vk.verify(msg2, &sig1, p_g, params));
|
||||
|
||||
let alpha = rng.gen();
|
||||
let rsk = sk.randomize(alpha);
|
||||
let rvk = vk.randomize(alpha, p_g, params);
|
||||
|
||||
let sig1 = rsk.sign(msg1, rng, p_g, params);
|
||||
let sig2 = rsk.sign(msg2, rng, p_g, params);
|
||||
|
||||
assert!(rvk.verify(msg1, &sig1, p_g, params));
|
||||
assert!(rvk.verify(msg2, &sig2, p_g, params));
|
||||
assert!(!rvk.verify(msg1, &sig2, p_g, params));
|
||||
assert!(!rvk.verify(msg2, &sig1, p_g, params));
|
||||
}
|
||||
}
|
||||
}
|
11
sapling-crypto/src/util.rs
Normal file
11
sapling-crypto/src/util.rs
Normal file
@@ -0,0 +1,11 @@
|
||||
use blake2_rfc::blake2b::Blake2b;
|
||||
|
||||
use jubjub::{JubjubEngine, ToUniform};
|
||||
|
||||
pub fn hash_to_scalar<E: JubjubEngine>(persona: &[u8], a: &[u8], b: &[u8]) -> E::Fs {
|
||||
let mut hasher = Blake2b::with_params(64, &[], &[], persona);
|
||||
hasher.update(a);
|
||||
hasher.update(b);
|
||||
let ret = hasher.finalize();
|
||||
E::Fs::to_uniform(ret.as_ref())
|
||||
}
|
Reference in New Issue
Block a user