mirror of
https://github.com/Qortal/pirate-librustzcash.git
synced 2025-01-31 15:52:14 +00:00
Implement twisted Edwards point conversion and addition in the circuit.
This commit is contained in:
parent
8e3bef80a4
commit
07f2e553a7
@ -26,12 +26,216 @@ use ::jubjub::{
|
||||
montgomery
|
||||
};
|
||||
|
||||
pub struct EdwardsPoint<E: Engine, Var> {
|
||||
x: AllocatedNum<E, Var>,
|
||||
y: AllocatedNum<E, Var>
|
||||
}
|
||||
|
||||
impl<E: JubjubEngine, Var: Copy> EdwardsPoint<E, Var> {
|
||||
/// This extracts the x-coordinate, which is an injective
|
||||
/// encoding for elements of the prime order subgroup.
|
||||
pub fn into_num(&self) -> AllocatedNum<E, Var> {
|
||||
self.x.clone()
|
||||
}
|
||||
|
||||
/// Perform addition between any two points
|
||||
pub fn add<CS>(
|
||||
&self,
|
||||
mut cs: CS,
|
||||
other: &Self,
|
||||
params: &E::Params
|
||||
) -> Result<Self, SynthesisError>
|
||||
where CS: ConstraintSystem<E, Variable=Var>
|
||||
{
|
||||
// Compute U = (x1 + y1) * (x2 + y2)
|
||||
let u = AllocatedNum::alloc(cs.namespace(|| "U"), || {
|
||||
let mut t0 = *self.x.get_value().get()?;
|
||||
t0.add_assign(self.y.get_value().get()?);
|
||||
|
||||
let mut t1 = *other.x.get_value().get()?;
|
||||
t1.add_assign(other.y.get_value().get()?);
|
||||
|
||||
t0.mul_assign(&t1);
|
||||
|
||||
Ok(t0)
|
||||
})?;
|
||||
|
||||
cs.enforce(
|
||||
|| "U computation",
|
||||
LinearCombination::<Var, E>::zero() + self.x.get_variable()
|
||||
+ self.y.get_variable(),
|
||||
LinearCombination::<Var, E>::zero() + other.x.get_variable()
|
||||
+ other.y.get_variable(),
|
||||
LinearCombination::<Var, E>::zero() + u.get_variable()
|
||||
);
|
||||
|
||||
// Compute A = y2 * x1
|
||||
let a = other.y.mul(cs.namespace(|| "A computation"), &self.x)?;
|
||||
|
||||
// Compute B = x2 * y1
|
||||
let b = other.x.mul(cs.namespace(|| "B computation"), &self.y)?;
|
||||
|
||||
// Compute C = d*A*B
|
||||
let c = AllocatedNum::alloc(cs.namespace(|| "C"), || {
|
||||
let mut t0 = *a.get_value().get()?;
|
||||
t0.mul_assign(b.get_value().get()?);
|
||||
t0.mul_assign(params.edwards_d());
|
||||
|
||||
Ok(t0)
|
||||
})?;
|
||||
|
||||
cs.enforce(
|
||||
|| "C computation",
|
||||
LinearCombination::<Var, E>::zero() + (*params.edwards_d(), a.get_variable()),
|
||||
LinearCombination::<Var, E>::zero() + b.get_variable(),
|
||||
LinearCombination::<Var, E>::zero() + c.get_variable()
|
||||
);
|
||||
|
||||
// Compute x3 = (A + B) / (1 + C)
|
||||
let x3 = AllocatedNum::alloc(cs.namespace(|| "x3"), || {
|
||||
let mut t0 = *a.get_value().get()?;
|
||||
t0.add_assign(b.get_value().get()?);
|
||||
|
||||
let mut t1 = E::Fr::one();
|
||||
t1.add_assign(c.get_value().get()?);
|
||||
|
||||
match t1.inverse() {
|
||||
Some(t1) => {
|
||||
t0.mul_assign(&t1);
|
||||
|
||||
Ok(t0)
|
||||
},
|
||||
None => {
|
||||
// TODO: add more descriptive error
|
||||
Err(SynthesisError::AssignmentMissing)
|
||||
}
|
||||
}
|
||||
})?;
|
||||
|
||||
let one = cs.one();
|
||||
cs.enforce(
|
||||
|| "x3 computation",
|
||||
LinearCombination::<Var, E>::zero() + one + c.get_variable(),
|
||||
LinearCombination::<Var, E>::zero() + x3.get_variable(),
|
||||
LinearCombination::<Var, E>::zero() + a.get_variable()
|
||||
+ b.get_variable()
|
||||
);
|
||||
|
||||
// Compute y3 = (U - A - B) / (1 - C)
|
||||
let y3 = AllocatedNum::alloc(cs.namespace(|| "y3"), || {
|
||||
let mut t0 = *u.get_value().get()?;
|
||||
t0.sub_assign(a.get_value().get()?);
|
||||
t0.sub_assign(b.get_value().get()?);
|
||||
|
||||
let mut t1 = E::Fr::one();
|
||||
t1.sub_assign(c.get_value().get()?);
|
||||
|
||||
match t1.inverse() {
|
||||
Some(t1) => {
|
||||
t0.mul_assign(&t1);
|
||||
|
||||
Ok(t0)
|
||||
},
|
||||
None => {
|
||||
// TODO: add more descriptive error
|
||||
Err(SynthesisError::AssignmentMissing)
|
||||
}
|
||||
}
|
||||
})?;
|
||||
|
||||
cs.enforce(
|
||||
|| "y3 computation",
|
||||
LinearCombination::<Var, E>::zero() + one - c.get_variable(),
|
||||
LinearCombination::<Var, E>::zero() + y3.get_variable(),
|
||||
LinearCombination::<Var, E>::zero() + u.get_variable()
|
||||
- a.get_variable()
|
||||
- b.get_variable()
|
||||
);
|
||||
|
||||
Ok(EdwardsPoint {
|
||||
x: x3,
|
||||
y: y3
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
pub struct MontgomeryPoint<E: Engine, Var> {
|
||||
x: AllocatedNum<E, Var>,
|
||||
y: AllocatedNum<E, Var>
|
||||
}
|
||||
|
||||
impl<E: JubjubEngine, Var: Copy> MontgomeryPoint<E, Var> {
|
||||
/// Converts an element in the prime order subgroup into
|
||||
/// a point in the birationally equivalent twisted
|
||||
/// Edwards curve.
|
||||
pub fn into_edwards<CS>(
|
||||
&self,
|
||||
mut cs: CS,
|
||||
params: &E::Params
|
||||
) -> Result<EdwardsPoint<E, Var>, SynthesisError>
|
||||
where CS: ConstraintSystem<E, Variable=Var>
|
||||
{
|
||||
// Compute u = (scale*x) / y
|
||||
let u = AllocatedNum::alloc(cs.namespace(|| "u"), || {
|
||||
let mut t0 = *self.x.get_value().get()?;
|
||||
t0.mul_assign(params.scale());
|
||||
|
||||
match self.y.get_value().get()?.inverse() {
|
||||
Some(invy) => {
|
||||
t0.mul_assign(&invy);
|
||||
|
||||
Ok(t0)
|
||||
},
|
||||
None => {
|
||||
// TODO: add more descriptive error
|
||||
Err(SynthesisError::AssignmentMissing)
|
||||
}
|
||||
}
|
||||
})?;
|
||||
|
||||
cs.enforce(
|
||||
|| "u computation",
|
||||
LinearCombination::<Var, E>::zero() + self.y.get_variable(),
|
||||
LinearCombination::<Var, E>::zero() + u.get_variable(),
|
||||
LinearCombination::<Var, E>::zero() + (*params.scale(), self.x.get_variable())
|
||||
);
|
||||
|
||||
// Compute v = (x - 1) / (x + 1)
|
||||
let v = AllocatedNum::alloc(cs.namespace(|| "v"), || {
|
||||
let mut t0 = *self.x.get_value().get()?;
|
||||
let mut t1 = t0;
|
||||
t0.sub_assign(&E::Fr::one());
|
||||
t1.add_assign(&E::Fr::one());
|
||||
|
||||
match t1.inverse() {
|
||||
Some(t1) => {
|
||||
t0.mul_assign(&t1);
|
||||
|
||||
Ok(t0)
|
||||
},
|
||||
None => {
|
||||
// TODO: add more descriptive error
|
||||
Err(SynthesisError::AssignmentMissing)
|
||||
}
|
||||
}
|
||||
})?;
|
||||
|
||||
let one = cs.one();
|
||||
cs.enforce(
|
||||
|| "v computation",
|
||||
LinearCombination::<Var, E>::zero() + self.x.get_variable()
|
||||
+ one,
|
||||
LinearCombination::<Var, E>::zero() + v.get_variable(),
|
||||
LinearCombination::<Var, E>::zero() + self.x.get_variable()
|
||||
- one,
|
||||
);
|
||||
|
||||
Ok(EdwardsPoint {
|
||||
x: u,
|
||||
y: v
|
||||
})
|
||||
}
|
||||
|
||||
pub fn group_hash<CS>(
|
||||
mut cs: CS,
|
||||
tag: &[Boolean<Var>],
|
||||
@ -352,12 +556,57 @@ mod test {
|
||||
use ::circuit::test::*;
|
||||
use ::jubjub::{
|
||||
montgomery,
|
||||
edwards,
|
||||
JubjubBls12
|
||||
};
|
||||
use super::{MontgomeryPoint, AllocatedNum, Boolean};
|
||||
use super::{
|
||||
MontgomeryPoint,
|
||||
EdwardsPoint,
|
||||
AllocatedNum,
|
||||
Boolean
|
||||
};
|
||||
use super::super::boolean::AllocatedBit;
|
||||
use ::group_hash::group_hash;
|
||||
|
||||
#[test]
|
||||
fn test_into_edwards() {
|
||||
let params = &JubjubBls12::new();
|
||||
let rng = &mut XorShiftRng::from_seed([0x3dbe6259, 0x8d313d76, 0x3237db17, 0xe5bc0654]);
|
||||
|
||||
for _ in 0..100 {
|
||||
let mut cs = TestConstraintSystem::<Bls12>::new();
|
||||
|
||||
let p = montgomery::Point::<Bls12, _>::rand(rng, params);
|
||||
let (u, v) = edwards::Point::from_montgomery(&p, params).into_xy();
|
||||
let (x, y) = p.into_xy().unwrap();
|
||||
|
||||
let numx = AllocatedNum::alloc(cs.namespace(|| "mont x"), || {
|
||||
Ok(x)
|
||||
}).unwrap();
|
||||
let numy = AllocatedNum::alloc(cs.namespace(|| "mont y"), || {
|
||||
Ok(y)
|
||||
}).unwrap();
|
||||
|
||||
let p = MontgomeryPoint::interpret_unchecked(numx, numy);
|
||||
|
||||
let q = p.into_edwards(&mut cs, params).unwrap();
|
||||
|
||||
assert!(cs.is_satisfied());
|
||||
assert!(q.x.get_value().unwrap() == u);
|
||||
assert!(q.y.get_value().unwrap() == v);
|
||||
|
||||
cs.set("u/num", rng.gen());
|
||||
assert_eq!(cs.which_is_unsatisfied().unwrap(), "u computation");
|
||||
cs.set("u/num", u);
|
||||
assert!(cs.is_satisfied());
|
||||
|
||||
cs.set("v/num", rng.gen());
|
||||
assert_eq!(cs.which_is_unsatisfied().unwrap(), "v computation");
|
||||
cs.set("v/num", v);
|
||||
assert!(cs.is_satisfied());
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_group_hash() {
|
||||
let params = &JubjubBls12::new();
|
||||
@ -493,7 +742,75 @@ mod test {
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_addition() {
|
||||
fn test_edwards_addition() {
|
||||
let params = &JubjubBls12::new();
|
||||
let rng = &mut XorShiftRng::from_seed([0x5dbe6259, 0x8d313d76, 0x3237db17, 0xe5bc0654]);
|
||||
|
||||
for _ in 0..100 {
|
||||
let p1 = edwards::Point::<Bls12, _>::rand(rng, params);
|
||||
let p2 = edwards::Point::<Bls12, _>::rand(rng, params);
|
||||
|
||||
let p3 = p1.add(&p2, params);
|
||||
|
||||
let (x0, y0) = p1.into_xy();
|
||||
let (x1, y1) = p2.into_xy();
|
||||
let (x2, y2) = p3.into_xy();
|
||||
|
||||
let mut cs = TestConstraintSystem::<Bls12>::new();
|
||||
|
||||
let num_x0 = AllocatedNum::alloc(cs.namespace(|| "x0"), || {
|
||||
Ok(x0)
|
||||
}).unwrap();
|
||||
let num_y0 = AllocatedNum::alloc(cs.namespace(|| "y0"), || {
|
||||
Ok(y0)
|
||||
}).unwrap();
|
||||
|
||||
let num_x1 = AllocatedNum::alloc(cs.namespace(|| "x1"), || {
|
||||
Ok(x1)
|
||||
}).unwrap();
|
||||
let num_y1 = AllocatedNum::alloc(cs.namespace(|| "y1"), || {
|
||||
Ok(y1)
|
||||
}).unwrap();
|
||||
|
||||
let p1 = EdwardsPoint {
|
||||
x: num_x0,
|
||||
y: num_y0
|
||||
};
|
||||
|
||||
let p2 = EdwardsPoint {
|
||||
x: num_x1,
|
||||
y: num_y1
|
||||
};
|
||||
|
||||
let p3 = p1.add(cs.namespace(|| "addition"), &p2, params).unwrap();
|
||||
|
||||
assert!(cs.is_satisfied());
|
||||
|
||||
assert!(p3.x.get_value().unwrap() == x2);
|
||||
assert!(p3.y.get_value().unwrap() == y2);
|
||||
|
||||
let u = cs.get("addition/U/num");
|
||||
cs.set("addition/U/num", rng.gen());
|
||||
assert_eq!(cs.which_is_unsatisfied(), Some("addition/U computation"));
|
||||
cs.set("addition/U/num", u);
|
||||
assert!(cs.is_satisfied());
|
||||
|
||||
let x3 = cs.get("addition/x3/num");
|
||||
cs.set("addition/x3/num", rng.gen());
|
||||
assert_eq!(cs.which_is_unsatisfied(), Some("addition/x3 computation"));
|
||||
cs.set("addition/x3/num", x3);
|
||||
assert!(cs.is_satisfied());
|
||||
|
||||
let y3 = cs.get("addition/y3/num");
|
||||
cs.set("addition/y3/num", rng.gen());
|
||||
assert_eq!(cs.which_is_unsatisfied(), Some("addition/y3 computation"));
|
||||
cs.set("addition/y3/num", y3);
|
||||
assert!(cs.is_satisfied());
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_montgomery_addition() {
|
||||
let params = &JubjubBls12::new();
|
||||
let rng = &mut XorShiftRng::from_seed([0x5dbe6259, 0x8d313d76, 0x3237db17, 0xe5bc0654]);
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user