refactor to rust-only structures

This commit is contained in:
NikVolf
2019-09-02 19:51:00 +03:00
parent 49f20e6735
commit 615c4f662e
3 changed files with 225 additions and 209 deletions

View File

@@ -1,59 +0,0 @@
#include <cstdarg>
#include <cstdint>
#include <cstdlib>
#include <new>
template<typename T>
struct Option;
struct NodeLink {
enum class Tag {
Stored,
Generated,
};
struct Stored_Body {
uint32_t _0;
};
struct Generated_Body {
uint32_t _0;
};
Tag tag;
union {
Stored_Body stored;
Generated_Body generated;
};
};
struct NodeData {
uint8_t subtree_commitment[32];
uint32_t start_time;
uint32_t end_time;
uint32_t start_target;
uint32_t end_target;
uint8_t start_sapling_root[32];
uint8_t end_sapling_root[32];
uint64_t subtree_total_work;
uint32_t start_height;
uint32_t end_height;
uint64_t shielded_tx;
};
struct MMRNode {
Option<NodeLink> left;
Option<NodeLink> right;
NodeData data;
};
extern "C" {
void append(const MMRNode *_stored,
uint32_t _stored_count,
const MMRNode *_generated,
uint32_t _generated_count,
uint32_t *_append_count,
MMRNode *_append_buffer);
} // extern "C"

View File

@@ -26,10 +26,16 @@ pub struct NodeData {
shielded_tx: u64,
}
#[derive(Debug)]
pub enum Error {
ExpectedInMemory(EntryLink),
ExpectedNode(Option<EntryLink>),
}
/// Reference to to the tree node.
#[repr(C)]
#[derive(Clone, Copy, Debug)]
pub enum NodeLink {
pub enum EntryLink {
/// Reference to the stored (in the array representation) leaf/node.
Stored(u32),
/// Reference to the generated leaf/node.
@@ -39,41 +45,57 @@ pub enum NodeLink {
/// MMR Node. It is leaf when `left`, `right` are `None` and node when they are not.
#[repr(C)]
#[derive(Debug)]
// TODO: Better layout would be enum (node, leaf), with left, right set only for nodes?
pub struct MMRNode {
left: Option<NodeLink>,
right: Option<NodeLink>,
pub enum EntryKind {
Leaf,
Node(EntryLink, EntryLink),
}
pub struct Entry {
kind: EntryKind,
data: NodeData,
}
impl MMRNode {
fn complete(&self) -> bool {
impl Entry {
pub fn complete(&self) -> bool {
let leaves = self.leaf_count();
leaves & (leaves - 1) == 0
}
fn leaf_count(&self) -> u32 {
pub fn leaf_count(&self) -> u32 {
self.data.end_height - self.data.start_height + 1
}
}
impl From<NodeData> for MMRNode {
fn from(s: NodeData) -> Self {
MMRNode { left: None, right: None, data: s }
pub fn is_leaf(&self) -> bool {
if let EntryKind::Leaf = self.kind { true } else { false }
}
pub fn left(&self) -> Result<EntryLink, Error> {
match self.kind {
EntryKind::Leaf => { Err(Error::ExpectedNode(None)) }
EntryKind::Node(left, _) => Ok(left)
}
}
pub fn right(&self) -> Result<EntryLink, Error> {
match self.kind {
EntryKind::Leaf => { Err(Error::ExpectedNode(None)) }
EntryKind::Node(_, right) => Ok(right)
}
}
}
#[no_mangle]
pub extern fn append(
_stored: *const MMRNode,
_stored_count: u32,
_generated: *const MMRNode,
_generated_count: u32,
_append_count: *mut u32,
_append_buffer: *mut MMRNode,
) {
// TODO: construct tree and write to (append_count, append_buffer)
// TODO: also return generated??
unimplemented!()
impl From<NodeData> for Entry {
fn from(s: NodeData) -> Self {
Entry { kind: EntryKind::Leaf, data: s }
}
}
impl Error {
pub (crate) fn augment(self, link: EntryLink) -> Self {
match self {
Error::ExpectedNode(None) => Error::ExpectedNode(Some(link)),
val => val
}
}
}

View File

@@ -1,6 +1,6 @@
use std::collections::HashMap;
use crate::{MMRNode, NodeLink, NodeData};
use crate::{Entry, EntryLink, NodeData, Error, EntryKind};
/// Represents partially loaded tree.
///
@@ -11,9 +11,9 @@ use crate::{MMRNode, NodeLink, NodeData};
/// to happen after construction.
#[derive(Default)]
pub struct Tree {
stored: HashMap<u32, MMRNode>,
stored: HashMap<u32, Entry>,
generated: HashMap<u32, MMRNode>,
generated: HashMap<u32, Entry>,
// number of persistent(!) tree entries
stored_count: u32,
@@ -26,10 +26,10 @@ pub struct Tree {
pub struct AppendTransaction {
/// Plain list of nodes that has to be appended to the end of the array representation
/// of the tree as the result of append operation.
pub appended: Vec<NodeLink>,
pub appended: Vec<EntryLink>,
/// New root as a result of the operation (can be generated one).
pub new_root: NodeLink,
pub new_root: EntryLink,
}
/// Result of truncating one or severl leaves.
@@ -37,48 +37,48 @@ pub struct DeleteTransaction {
/// Number of leaves that should be dropped from the end of the list.
pub truncated: u32,
/// New root as the result of the operation (can be generated one).
pub new_root: NodeLink,
pub new_root: EntryLink,
}
impl Tree {
fn resolve_link(&self, link: NodeLink) -> IndexedNode {
fn resolve_link(&self, link: EntryLink) -> Result<IndexedNode, Error> {
match link {
NodeLink::Generated(index) => {
EntryLink::Generated(index) => {
// TODO: maybe graceful error?
let node = self.generated.get(&index).expect("caller should ensure id generated");
IndexedNode {
let node = self.generated.get(&index).ok_or(Error::ExpectedInMemory(link))?;
Ok(IndexedNode {
node,
link,
}
})
},
NodeLink::Stored(index) => {
EntryLink::Stored(index) => {
// TODO: maybe graceful error?
let node = self.stored.get(&index).expect("caller should ensure id stored");
IndexedNode {
let node = self.stored.get(&index).ok_or(Error::ExpectedInMemory(link))?;
Ok(IndexedNode {
node,
link,
}
})
},
}
}
fn push(&mut self, data: MMRNode) -> NodeLink {
fn push(&mut self, data: Entry) -> EntryLink {
let idx = self.stored_count;
self.stored_count = self.stored_count + 1;
self.stored.insert(idx, data);
NodeLink::Stored(idx)
EntryLink::Stored(idx)
}
fn push_generated(&mut self, data: MMRNode) -> NodeLink {
fn push_generated(&mut self, data: Entry) -> EntryLink {
let idx = self.generated_count;
self.generated_count = self.generated_count + 1;
self.generated.insert(idx, data);
NodeLink::Generated(idx)
EntryLink::Generated(idx)
}
/// Populate tree with plain list of the leaves/nodes. Mostly for tests,
/// since this `Tree` structure is for partially loaded tree.
pub fn populate(loaded: Vec<MMRNode>) -> Self {
pub fn populate(loaded: Vec<Entry>) -> Self {
let mut result = Tree::default();
result.stored_count = loaded.len() as u32;
for (idx, item) in loaded.into_iter().enumerate() {
@@ -90,8 +90,8 @@ impl Tree {
pub fn new(
length: u32,
stored: Vec<(u32, MMRNode)>,
generated: Vec<MMRNode>,
stored: Vec<(u32, Entry)>,
generated: Vec<Entry>,
) -> Self {
let mut result = Tree::default();
result.stored_count = length;
@@ -109,32 +109,33 @@ impl Tree {
result
}
fn get_peaks(&self, root: NodeLink, target: &mut Vec<NodeLink>) {
fn get_peaks(&self, root: EntryLink, target: &mut Vec<EntryLink>) -> Result<(), Error> {
let (left_child_link, right_child_link) = {
let root = self.resolve_link(root);
let root = self.resolve_link(root)?;
if root.node.complete() {
target.push(root.link);
return;
return Ok(());
}
(
root.node.left.expect("It would stop before when root is leaf"),
root.node.right.expect("It would stop before when root is leaf"),
root.left()?,
root.right()?,
)
};
self.get_peaks(left_child_link, target);
self.get_peaks(right_child_link, target);
self.get_peaks(left_child_link, target)?;
self.get_peaks(right_child_link, target)?;
Ok(())
}
/// Append one leaf to the tree.
pub fn append_leaf(&mut self, root: NodeLink, new_leaf: NodeData) -> AppendTransaction {
pub fn append_leaf(&mut self, root: EntryLink, new_leaf: NodeData) -> Result<AppendTransaction, Error> {
let new_leaf_link = self.push(new_leaf.into());
let mut appended = Vec::new();
appended.push(new_leaf_link);
let mut peaks = Vec::new();
self.get_peaks(root, &mut peaks);
self.get_peaks(root, &mut peaks)?;
let mut merge_stack = Vec::new();
merge_stack.push(new_leaf_link);
@@ -143,8 +144,8 @@ impl Tree {
let next_merge = merge_stack.pop().expect("there should be at least one, initial or re-pushed");
if let Some(stored) = {
let peak = self.resolve_link(next_peak);
let m = self.resolve_link(next_merge);
let peak = self.resolve_link(next_peak)?;
let m = self.resolve_link(next_merge)?;
if peak.node.leaf_count() == m.node.leaf_count() {
Some(combine_nodes(peak, m))
} else { None }
@@ -162,28 +163,28 @@ impl Tree {
while let Some(next_child) = merge_stack.pop() {
new_root = self.push_generated(
combine_nodes(
self.resolve_link(new_root),
self.resolve_link(next_child),
self.resolve_link(new_root)?,
self.resolve_link(next_child)?,
)
)
}
AppendTransaction {
Ok(AppendTransaction {
new_root,
appended,
}
})
}
#[cfg(test)]
fn for_children<F: FnMut(NodeLink, NodeLink)>(&mut self, node: NodeLink, mut f: F) {
fn for_children<F: FnMut(EntryLink, EntryLink)>(&mut self, node: EntryLink, mut f: F) {
let (left, right) = {
let link = self.resolve_link(node);
let link = self.resolve_link(node).expect("Failed to resolve link in test");
(
link.node.left.expect("test use only (l)"),
link.node.right.expect("test use only (r)"),
link.left().expect("Failed to find node in test"),
link.right().expect("Failed to find node in test"),
)
};
f(left, right)
f(left, right);
}
fn pop(&mut self) {
@@ -192,37 +193,35 @@ impl Tree {
}
/// Truncate one leaf from the end of the tree.
pub fn truncate_leaf(&mut self, root: NodeLink) -> DeleteTransaction {
pub fn truncate_leaf(&mut self, root: EntryLink) -> Result<DeleteTransaction, Error> {
let root = {
let (leaves, root_left_child) = {
let n = self.resolve_link(root);
let n = self.resolve_link(root)?;
(
n.node.leaf_count(),
n.node.left.expect("Root should have left child while deleting")
n.node.left()?,
)
};
if leaves & 1 != 0 {
self.pop();
return DeleteTransaction {
return Ok(DeleteTransaction {
truncated: 1,
new_root: root_left_child,
}
})
} else {
self.resolve_link(root)
self.resolve_link(root)?
}
};
let mut peaks = vec![root.node.left.expect("Root should have left child")];
let mut subtree_root_link = root.node.right.expect("Root should have right child");
let mut peaks = vec![root.left()?];
let mut subtree_root_link = root.right()?;
let mut truncated = 1;
loop {
let left_link = self.resolve_link(subtree_root_link).node.left;
if let Some(left_link) = left_link {
peaks.push(left_link);
subtree_root_link = self
.resolve_link(subtree_root_link).node.right
.expect("If left exists, right should exist as well");
let left_link = self.resolve_link(subtree_root_link)?.node;
if let EntryKind::Node(left, right) = left_link.kind {
peaks.push(left);
subtree_root_link = right;
truncated += 1;
} else {
if root.node.complete() { truncated += 1; }
@@ -234,19 +233,19 @@ impl Tree {
for next_peak in peaks.into_iter() {
new_root = self.push_generated(
combine_nodes(
self.resolve_link(new_root),
self.resolve_link(next_peak)
)
);
combine_nodes(
self.resolve_link(new_root)?,
self.resolve_link(next_peak)?,
)
);
}
for _ in 0..truncated { self.pop(); }
DeleteTransaction {
Ok(DeleteTransaction {
new_root,
truncated,
}
})
}
/// Length of array representation of the tree.
@@ -257,8 +256,20 @@ impl Tree {
struct IndexedNode<'a> {
node: &'a MMRNode,
link: NodeLink,
node: &'a Entry,
link: EntryLink,
}
impl<'a> IndexedNode<'a> {
fn left(&self) -> Result<EntryLink, Error> {
self.node.left().map_err(|e| e.augment(self.link))
}
fn right(&self) -> Result<EntryLink, Error> {
self.node.right().map_err(|e| e.augment(self.link))
}
}
fn combine_data(left: &NodeData, right: &NodeData) -> NodeData {
@@ -280,10 +291,9 @@ fn combine_data(left: &NodeData, right: &NodeData) -> NodeData {
}
}
fn combine_nodes<'a>(left: IndexedNode<'a>, right: IndexedNode<'a>) -> MMRNode {
MMRNode {
left: Some(left.link),
right: Some(right.link),
fn combine_nodes<'a>(left: IndexedNode<'a>, right: IndexedNode<'a>) -> Entry {
Entry {
kind: EntryKind::Node(left.link, right.link),
data: combine_data(&left.node.data, &right.node.data),
}
}
@@ -291,7 +301,7 @@ fn combine_nodes<'a>(left: IndexedNode<'a>, right: IndexedNode<'a>) -> MMRNode {
#[cfg(test)]
mod tests {
use super::{MMRNode, NodeData, Tree, NodeLink};
use super::{Entry, NodeData, Tree, EntryLink, EntryKind};
use quickcheck::TestResult;
fn leaf(height: u32) -> NodeData {
@@ -326,25 +336,27 @@ mod tests {
}
}
fn initial() -> (NodeLink, Tree) {
let node1: MMRNode = leaf(1).into();
let node2: MMRNode = leaf(2).into();
fn initial() -> (EntryLink, Tree) {
let node1: Entry = leaf(1).into();
let node2: Entry = leaf(2).into();
let node3 = MMRNode {
let node3 = Entry {
data: node(1, 2),
left: Some(NodeLink::Stored(0)),
right: Some(NodeLink::Stored(1)),
kind: EntryKind::Leaf,
};
(NodeLink::Stored(2), Tree::populate(vec![node1, node2, node3]))
(EntryLink::Stored(2), Tree::populate(vec![node1, node2, node3]))
}
// returns tree with specified number of leafs and it's root
fn generated(length: u32) -> (Tree, NodeLink) {
fn generated(length: u32) -> (Tree, EntryLink) {
assert!(length >= 3);
let (mut root, mut tree) = initial();
for i in 2..length {
root = tree.append_leaf(root, leaf(i+1).into()).new_root;
root = tree
.append_leaf(root, leaf(i+1).into())
.expect("Failed to append")
.new_root;
}
(tree, root)
@@ -355,9 +367,11 @@ mod tests {
let (root, mut tree) = initial();
// ** APPEND 3 **
let append_tx = tree.append_leaf(root, leaf(3));
let append_tx = tree
.append_leaf(root, leaf(3))
.expect("Failed to append");
let new_root_link = append_tx.new_root;
let new_root = tree.resolve_link(new_root_link).node;
let new_root = tree.resolve_link(new_root_link).expect("Failed to resolve root").node;
// initial tree: (2)
// / \
@@ -376,9 +390,12 @@ mod tests {
assert_eq!(append_tx.appended.len(), 1);
// ** APPEND 4 **
let append_tx = tree.append_leaf(new_root_link, leaf(4));
let append_tx = tree
.append_leaf(new_root_link, leaf(4))
.expect("Failed to append");
let new_root_link = append_tx.new_root;
let new_root = tree.resolve_link(new_root_link).node;
let new_root = tree.resolve_link(new_root_link).expect("Failed to resolve root").node;
// intermediate tree:
// (4g)
@@ -398,13 +415,15 @@ mod tests {
// and new root, (6) is stored one
assert_eq!(new_root.data.end_height, 4);
assert_eq!(append_tx.appended.len(), 3);
assert_matches!(new_root_link, NodeLink::Stored(6));
assert_matches!(new_root_link, EntryLink::Stored(6));
// ** APPEND 5 **
let append_tx = tree.append_leaf(new_root_link, leaf(5));
let append_tx = tree
.append_leaf(new_root_link, leaf(5))
.expect("Failed to append");
let new_root_link = append_tx.new_root;
let new_root = tree.resolve_link(new_root_link).node;
let new_root = tree.resolve_link(new_root_link).expect("Failed to resolve root").node;
// intermediate tree:
// ( 6 )
@@ -426,16 +445,18 @@ mod tests {
// and new root, (8g) is generated one
assert_eq!(new_root.data.end_height, 5);
assert_eq!(append_tx.appended.len(), 1);
assert_matches!(new_root_link, NodeLink::Generated(_));
assert_matches!(new_root_link, EntryLink::Generated(_));
tree.for_children(new_root_link, |l, r| {
assert_matches!(l, NodeLink::Stored(6));
assert_matches!(r, NodeLink::Stored(7));
assert_matches!(l, EntryLink::Stored(6));
assert_matches!(r, EntryLink::Stored(7));
});
// *** APPEND #6 ***
let append_tx = tree.append_leaf(new_root_link, leaf(6));
let append_tx = tree
.append_leaf(new_root_link, leaf(6))
.expect("Failed to append");
let new_root_link = append_tx.new_root;
let new_root = tree.resolve_link(new_root_link).node;
let new_root = tree.resolve_link(new_root_link).expect("Failed to resolve root").node;
// intermediate tree:
// ( 8g )
@@ -459,17 +480,22 @@ mod tests {
// and new root, (8g) is generated one
assert_eq!(new_root.data.end_height, 6);
assert_eq!(append_tx.appended.len(), 2);
assert_matches!(new_root_link, NodeLink::Generated(_));
assert_matches!(new_root_link, EntryLink::Generated(_));
tree.for_children(new_root_link, |l, r| {
assert_matches!(l, NodeLink::Stored(6));
assert_matches!(r, NodeLink::Stored(9));
assert_matches!(l, EntryLink::Stored(6));
assert_matches!(r, EntryLink::Stored(9));
});
// *** APPEND #7 ***
let append_tx = tree.append_leaf(new_root_link, leaf(7));
let append_tx = tree
.append_leaf(new_root_link, leaf(7))
.expect("Failed to append");
let new_root_link = append_tx.new_root;
let new_root = tree.resolve_link(new_root_link).node;
let new_root = tree
.resolve_link(new_root_link)
.expect("Failed to resolve root")
.node;
// intermediate tree:
// (---8g---)
@@ -495,17 +521,19 @@ mod tests {
// and new root, (8g) is generated one
assert_eq!(new_root.data.end_height, 7);
assert_eq!(append_tx.appended.len(), 1);
assert_matches!(new_root_link, NodeLink::Generated(_));
assert_matches!(new_root_link, EntryLink::Generated(_));
tree.for_children(new_root_link, |l, r| {
assert_matches!(l, NodeLink::Generated(_));
assert_matches!(r, NodeLink::Stored(10));
assert_matches!(l, EntryLink::Generated(_));
assert_matches!(r, EntryLink::Stored(10));
});
}
#[test]
fn truncate_simple() {
let (mut tree, root) = generated(9);
let delete_tx = tree.truncate_leaf(root);
let delete_tx = tree
.truncate_leaf(root)
.expect("Failed to truncate");
// initial tree:
//
@@ -531,14 +559,16 @@ mod tests {
// so (15) is truncated
// and new root, (14) is a stored one now
assert_matches!(delete_tx.new_root, NodeLink::Stored(14));
assert_matches!(delete_tx.new_root, EntryLink::Stored(14));
assert_eq!(tree.len(), 15);
}
#[test]
fn truncate_generated() {
let (mut tree, root) = generated(10);
let delete_tx = tree.truncate_leaf(root);
let delete_tx = tree
.truncate_leaf(root)
.expect("Failed to truncate");
// initial tree:
//
@@ -565,21 +595,21 @@ mod tests {
// new root is generated
assert_matches!(delete_tx.new_root, NodeLink::Generated(_));
assert_matches!(delete_tx.new_root, EntryLink::Generated(_));
// left is 14 and right is 15
let (left_root_child, right_root_child) = {
let root = tree.resolve_link(delete_tx.new_root);
let root = tree.resolve_link(delete_tx.new_root).expect("Failed to resolve");
(
root.node.left.expect("there should be left child for root"),
root.node.right.expect("there should be right child for root"),
root.left().expect("Expected node"),
root.right().expect("Expected node"),
)
};
assert_matches!(
(left_root_child, right_root_child),
(NodeLink::Stored(14), NodeLink::Stored(15))
(EntryLink::Stored(14), EntryLink::Stored(15))
);
// two stored nodes should leave us (leaf 16 and no longer needed node 17)
@@ -594,11 +624,14 @@ mod tests {
assert_eq!(tree.len(), 3);
for i in 0..2 {
root = tree.append_leaf(root, leaf(i+3)).new_root;
root = tree
.append_leaf(root, leaf(i+3))
.expect("Failed to append")
.new_root;
}
assert_eq!(tree.len(), 7);
tree.truncate_leaf(root);
tree.truncate_leaf(root).expect("Failed to truncate");
assert_eq!(tree.len(), 4);
}
@@ -610,12 +643,18 @@ mod tests {
assert_eq!(tree.len(), 3);
for i in 0..4094 {
root = tree.append_leaf(root, leaf(i+3)).new_root;
root = tree
.append_leaf(root, leaf(i+3))
.expect("Failed to append")
.new_root;
}
assert_eq!(tree.len(), 8191); // 4096*2-1 (full tree)
for _ in 0..2049 {
root = tree.truncate_leaf(root).new_root;
root = tree
.truncate_leaf(root)
.expect("Failed to truncate")
.new_root;
}
assert_eq!(tree.len(), 4083); // 4095 - log2(4096)
@@ -629,13 +668,16 @@ mod tests {
} else {
let (mut root, mut tree) = initial();
for i in 0..number {
root = tree.append_leaf(root, leaf(i+3)).new_root;
root = tree
.append_leaf(root, leaf(i+3))
.expect("Failed to append")
.new_root;
}
for _ in 0..number {
root = tree.truncate_leaf(root).new_root;
root = tree.truncate_leaf(root).expect("Failed to truncate").new_root;
}
TestResult::from_bool(if let NodeLink::Stored(2) = root { true } else { false })
TestResult::from_bool(if let EntryLink::Stored(2) = root { true } else { false })
}
}
@@ -645,10 +687,21 @@ mod tests {
} else {
let (mut root, mut tree) = initial();
for i in 1..(number-1) {
root = tree.append_leaf(root, leaf(i+2)).new_root;
root = tree
.append_leaf(root, leaf(i+2))
.expect("Failed to append")
.new_root;
}
TestResult::from_bool(tree.resolve_link(root).node.leaf_count() == number)
TestResult::from_bool(
tree
.resolve_link(root)
.expect("Failed to resolve root")
.node
.leaf_count()
==
number
)
}
}
@@ -658,15 +711,15 @@ mod tests {
} else {
let (mut root, mut tree) = initial();
for i in 1..(number-1) {
root = tree.append_leaf(root, leaf(i+2)).new_root;
root = tree.append_leaf(root, leaf(i+2)).expect("Failed to append").new_root;
}
TestResult::from_bool(
if number & number - 1 == 0 {
if let NodeLink::Stored(_) = root { true }
if let EntryLink::Stored(_) = root { true }
else { false }
} else {
if let NodeLink::Generated(_) = root { true }
if let EntryLink::Generated(_) = root { true }
else { false }
}
)
@@ -681,20 +734,20 @@ mod tests {
} else {
let (mut root, mut tree) = initial();
for i in 0..add {
root = tree.append_leaf(root, leaf(i+3)).new_root;
root = tree.append_leaf(root, leaf(i+3)).expect("Failed to append").new_root;
}
for _ in 0..delete {
root = tree.truncate_leaf(root).new_root;
root = tree.truncate_leaf(root).expect("Failed to truncate").new_root;
}
let total = add - delete + 2;
TestResult::from_bool(
if total & total - 1 == 0 {
if let NodeLink::Stored(_) = root { true }
if let EntryLink::Stored(_) = root { true }
else { false }
} else {
if let NodeLink::Generated(_) = root { true }
if let EntryLink::Generated(_) = root { true }
else { false }
}
)
@@ -707,10 +760,10 @@ mod tests {
} else {
let (mut root, mut tree) = initial();
for i in 0..add {
root = tree.append_leaf(root, leaf(i+3)).new_root;
root = tree.append_leaf(root, leaf(i+3)).expect("Failed to append").new_root;
}
for _ in 0..delete {
root = tree.truncate_leaf(root).new_root;
root = tree.truncate_leaf(root).expect("Failed to truncate").new_root;
}
let total = add - delete + 2;