refactor to rust-only structures

This commit is contained in:
NikVolf
2019-09-02 19:51:00 +03:00
parent 49f20e6735
commit 615c4f662e
3 changed files with 225 additions and 209 deletions

View File

@@ -1,59 +0,0 @@
#include <cstdarg>
#include <cstdint>
#include <cstdlib>
#include <new>
template<typename T>
struct Option;
struct NodeLink {
enum class Tag {
Stored,
Generated,
};
struct Stored_Body {
uint32_t _0;
};
struct Generated_Body {
uint32_t _0;
};
Tag tag;
union {
Stored_Body stored;
Generated_Body generated;
};
};
struct NodeData {
uint8_t subtree_commitment[32];
uint32_t start_time;
uint32_t end_time;
uint32_t start_target;
uint32_t end_target;
uint8_t start_sapling_root[32];
uint8_t end_sapling_root[32];
uint64_t subtree_total_work;
uint32_t start_height;
uint32_t end_height;
uint64_t shielded_tx;
};
struct MMRNode {
Option<NodeLink> left;
Option<NodeLink> right;
NodeData data;
};
extern "C" {
void append(const MMRNode *_stored,
uint32_t _stored_count,
const MMRNode *_generated,
uint32_t _generated_count,
uint32_t *_append_count,
MMRNode *_append_buffer);
} // extern "C"

View File

@@ -26,10 +26,16 @@ pub struct NodeData {
shielded_tx: u64, shielded_tx: u64,
} }
#[derive(Debug)]
pub enum Error {
ExpectedInMemory(EntryLink),
ExpectedNode(Option<EntryLink>),
}
/// Reference to to the tree node. /// Reference to to the tree node.
#[repr(C)] #[repr(C)]
#[derive(Clone, Copy, Debug)] #[derive(Clone, Copy, Debug)]
pub enum NodeLink { pub enum EntryLink {
/// Reference to the stored (in the array representation) leaf/node. /// Reference to the stored (in the array representation) leaf/node.
Stored(u32), Stored(u32),
/// Reference to the generated leaf/node. /// Reference to the generated leaf/node.
@@ -39,41 +45,57 @@ pub enum NodeLink {
/// MMR Node. It is leaf when `left`, `right` are `None` and node when they are not. /// MMR Node. It is leaf when `left`, `right` are `None` and node when they are not.
#[repr(C)] #[repr(C)]
#[derive(Debug)] #[derive(Debug)]
// TODO: Better layout would be enum (node, leaf), with left, right set only for nodes? pub enum EntryKind {
pub struct MMRNode { Leaf,
left: Option<NodeLink>, Node(EntryLink, EntryLink),
right: Option<NodeLink>, }
pub struct Entry {
kind: EntryKind,
data: NodeData, data: NodeData,
} }
impl MMRNode { impl Entry {
fn complete(&self) -> bool { pub fn complete(&self) -> bool {
let leaves = self.leaf_count(); let leaves = self.leaf_count();
leaves & (leaves - 1) == 0 leaves & (leaves - 1) == 0
} }
fn leaf_count(&self) -> u32 { pub fn leaf_count(&self) -> u32 {
self.data.end_height - self.data.start_height + 1 self.data.end_height - self.data.start_height + 1
} }
}
impl From<NodeData> for MMRNode { pub fn is_leaf(&self) -> bool {
fn from(s: NodeData) -> Self { if let EntryKind::Leaf = self.kind { true } else { false }
MMRNode { left: None, right: None, data: s } }
pub fn left(&self) -> Result<EntryLink, Error> {
match self.kind {
EntryKind::Leaf => { Err(Error::ExpectedNode(None)) }
EntryKind::Node(left, _) => Ok(left)
}
}
pub fn right(&self) -> Result<EntryLink, Error> {
match self.kind {
EntryKind::Leaf => { Err(Error::ExpectedNode(None)) }
EntryKind::Node(_, right) => Ok(right)
}
} }
} }
#[no_mangle] impl From<NodeData> for Entry {
pub extern fn append( fn from(s: NodeData) -> Self {
_stored: *const MMRNode, Entry { kind: EntryKind::Leaf, data: s }
_stored_count: u32, }
_generated: *const MMRNode,
_generated_count: u32,
_append_count: *mut u32,
_append_buffer: *mut MMRNode,
) {
// TODO: construct tree and write to (append_count, append_buffer)
// TODO: also return generated??
unimplemented!()
} }
impl Error {
pub (crate) fn augment(self, link: EntryLink) -> Self {
match self {
Error::ExpectedNode(None) => Error::ExpectedNode(Some(link)),
val => val
}
}
}

View File

@@ -1,6 +1,6 @@
use std::collections::HashMap; use std::collections::HashMap;
use crate::{MMRNode, NodeLink, NodeData}; use crate::{Entry, EntryLink, NodeData, Error, EntryKind};
/// Represents partially loaded tree. /// Represents partially loaded tree.
/// ///
@@ -11,9 +11,9 @@ use crate::{MMRNode, NodeLink, NodeData};
/// to happen after construction. /// to happen after construction.
#[derive(Default)] #[derive(Default)]
pub struct Tree { pub struct Tree {
stored: HashMap<u32, MMRNode>, stored: HashMap<u32, Entry>,
generated: HashMap<u32, MMRNode>, generated: HashMap<u32, Entry>,
// number of persistent(!) tree entries // number of persistent(!) tree entries
stored_count: u32, stored_count: u32,
@@ -26,10 +26,10 @@ pub struct Tree {
pub struct AppendTransaction { pub struct AppendTransaction {
/// Plain list of nodes that has to be appended to the end of the array representation /// Plain list of nodes that has to be appended to the end of the array representation
/// of the tree as the result of append operation. /// of the tree as the result of append operation.
pub appended: Vec<NodeLink>, pub appended: Vec<EntryLink>,
/// New root as a result of the operation (can be generated one). /// New root as a result of the operation (can be generated one).
pub new_root: NodeLink, pub new_root: EntryLink,
} }
/// Result of truncating one or severl leaves. /// Result of truncating one or severl leaves.
@@ -37,48 +37,48 @@ pub struct DeleteTransaction {
/// Number of leaves that should be dropped from the end of the list. /// Number of leaves that should be dropped from the end of the list.
pub truncated: u32, pub truncated: u32,
/// New root as the result of the operation (can be generated one). /// New root as the result of the operation (can be generated one).
pub new_root: NodeLink, pub new_root: EntryLink,
} }
impl Tree { impl Tree {
fn resolve_link(&self, link: NodeLink) -> IndexedNode { fn resolve_link(&self, link: EntryLink) -> Result<IndexedNode, Error> {
match link { match link {
NodeLink::Generated(index) => { EntryLink::Generated(index) => {
// TODO: maybe graceful error? // TODO: maybe graceful error?
let node = self.generated.get(&index).expect("caller should ensure id generated"); let node = self.generated.get(&index).ok_or(Error::ExpectedInMemory(link))?;
IndexedNode { Ok(IndexedNode {
node, node,
link, link,
} })
}, },
NodeLink::Stored(index) => { EntryLink::Stored(index) => {
// TODO: maybe graceful error? // TODO: maybe graceful error?
let node = self.stored.get(&index).expect("caller should ensure id stored"); let node = self.stored.get(&index).ok_or(Error::ExpectedInMemory(link))?;
IndexedNode { Ok(IndexedNode {
node, node,
link, link,
} })
}, },
} }
} }
fn push(&mut self, data: MMRNode) -> NodeLink { fn push(&mut self, data: Entry) -> EntryLink {
let idx = self.stored_count; let idx = self.stored_count;
self.stored_count = self.stored_count + 1; self.stored_count = self.stored_count + 1;
self.stored.insert(idx, data); self.stored.insert(idx, data);
NodeLink::Stored(idx) EntryLink::Stored(idx)
} }
fn push_generated(&mut self, data: MMRNode) -> NodeLink { fn push_generated(&mut self, data: Entry) -> EntryLink {
let idx = self.generated_count; let idx = self.generated_count;
self.generated_count = self.generated_count + 1; self.generated_count = self.generated_count + 1;
self.generated.insert(idx, data); self.generated.insert(idx, data);
NodeLink::Generated(idx) EntryLink::Generated(idx)
} }
/// Populate tree with plain list of the leaves/nodes. Mostly for tests, /// Populate tree with plain list of the leaves/nodes. Mostly for tests,
/// since this `Tree` structure is for partially loaded tree. /// since this `Tree` structure is for partially loaded tree.
pub fn populate(loaded: Vec<MMRNode>) -> Self { pub fn populate(loaded: Vec<Entry>) -> Self {
let mut result = Tree::default(); let mut result = Tree::default();
result.stored_count = loaded.len() as u32; result.stored_count = loaded.len() as u32;
for (idx, item) in loaded.into_iter().enumerate() { for (idx, item) in loaded.into_iter().enumerate() {
@@ -90,8 +90,8 @@ impl Tree {
pub fn new( pub fn new(
length: u32, length: u32,
stored: Vec<(u32, MMRNode)>, stored: Vec<(u32, Entry)>,
generated: Vec<MMRNode>, generated: Vec<Entry>,
) -> Self { ) -> Self {
let mut result = Tree::default(); let mut result = Tree::default();
result.stored_count = length; result.stored_count = length;
@@ -109,32 +109,33 @@ impl Tree {
result result
} }
fn get_peaks(&self, root: NodeLink, target: &mut Vec<NodeLink>) { fn get_peaks(&self, root: EntryLink, target: &mut Vec<EntryLink>) -> Result<(), Error> {
let (left_child_link, right_child_link) = { let (left_child_link, right_child_link) = {
let root = self.resolve_link(root); let root = self.resolve_link(root)?;
if root.node.complete() { if root.node.complete() {
target.push(root.link); target.push(root.link);
return; return Ok(());
} }
( (
root.node.left.expect("It would stop before when root is leaf"), root.left()?,
root.node.right.expect("It would stop before when root is leaf"), root.right()?,
) )
}; };
self.get_peaks(left_child_link, target); self.get_peaks(left_child_link, target)?;
self.get_peaks(right_child_link, target); self.get_peaks(right_child_link, target)?;
Ok(())
} }
/// Append one leaf to the tree. /// Append one leaf to the tree.
pub fn append_leaf(&mut self, root: NodeLink, new_leaf: NodeData) -> AppendTransaction { pub fn append_leaf(&mut self, root: EntryLink, new_leaf: NodeData) -> Result<AppendTransaction, Error> {
let new_leaf_link = self.push(new_leaf.into()); let new_leaf_link = self.push(new_leaf.into());
let mut appended = Vec::new(); let mut appended = Vec::new();
appended.push(new_leaf_link); appended.push(new_leaf_link);
let mut peaks = Vec::new(); let mut peaks = Vec::new();
self.get_peaks(root, &mut peaks); self.get_peaks(root, &mut peaks)?;
let mut merge_stack = Vec::new(); let mut merge_stack = Vec::new();
merge_stack.push(new_leaf_link); merge_stack.push(new_leaf_link);
@@ -143,8 +144,8 @@ impl Tree {
let next_merge = merge_stack.pop().expect("there should be at least one, initial or re-pushed"); let next_merge = merge_stack.pop().expect("there should be at least one, initial or re-pushed");
if let Some(stored) = { if let Some(stored) = {
let peak = self.resolve_link(next_peak); let peak = self.resolve_link(next_peak)?;
let m = self.resolve_link(next_merge); let m = self.resolve_link(next_merge)?;
if peak.node.leaf_count() == m.node.leaf_count() { if peak.node.leaf_count() == m.node.leaf_count() {
Some(combine_nodes(peak, m)) Some(combine_nodes(peak, m))
} else { None } } else { None }
@@ -162,28 +163,28 @@ impl Tree {
while let Some(next_child) = merge_stack.pop() { while let Some(next_child) = merge_stack.pop() {
new_root = self.push_generated( new_root = self.push_generated(
combine_nodes( combine_nodes(
self.resolve_link(new_root), self.resolve_link(new_root)?,
self.resolve_link(next_child), self.resolve_link(next_child)?,
) )
) )
} }
AppendTransaction { Ok(AppendTransaction {
new_root, new_root,
appended, appended,
} })
} }
#[cfg(test)] #[cfg(test)]
fn for_children<F: FnMut(NodeLink, NodeLink)>(&mut self, node: NodeLink, mut f: F) { fn for_children<F: FnMut(EntryLink, EntryLink)>(&mut self, node: EntryLink, mut f: F) {
let (left, right) = { let (left, right) = {
let link = self.resolve_link(node); let link = self.resolve_link(node).expect("Failed to resolve link in test");
( (
link.node.left.expect("test use only (l)"), link.left().expect("Failed to find node in test"),
link.node.right.expect("test use only (r)"), link.right().expect("Failed to find node in test"),
) )
}; };
f(left, right) f(left, right);
} }
fn pop(&mut self) { fn pop(&mut self) {
@@ -192,37 +193,35 @@ impl Tree {
} }
/// Truncate one leaf from the end of the tree. /// Truncate one leaf from the end of the tree.
pub fn truncate_leaf(&mut self, root: NodeLink) -> DeleteTransaction { pub fn truncate_leaf(&mut self, root: EntryLink) -> Result<DeleteTransaction, Error> {
let root = { let root = {
let (leaves, root_left_child) = { let (leaves, root_left_child) = {
let n = self.resolve_link(root); let n = self.resolve_link(root)?;
( (
n.node.leaf_count(), n.node.leaf_count(),
n.node.left.expect("Root should have left child while deleting") n.node.left()?,
) )
}; };
if leaves & 1 != 0 { if leaves & 1 != 0 {
self.pop(); self.pop();
return DeleteTransaction { return Ok(DeleteTransaction {
truncated: 1, truncated: 1,
new_root: root_left_child, new_root: root_left_child,
} })
} else { } else {
self.resolve_link(root) self.resolve_link(root)?
} }
}; };
let mut peaks = vec![root.node.left.expect("Root should have left child")]; let mut peaks = vec![root.left()?];
let mut subtree_root_link = root.node.right.expect("Root should have right child"); let mut subtree_root_link = root.right()?;
let mut truncated = 1; let mut truncated = 1;
loop { loop {
let left_link = self.resolve_link(subtree_root_link).node.left; let left_link = self.resolve_link(subtree_root_link)?.node;
if let Some(left_link) = left_link { if let EntryKind::Node(left, right) = left_link.kind {
peaks.push(left_link); peaks.push(left);
subtree_root_link = self subtree_root_link = right;
.resolve_link(subtree_root_link).node.right
.expect("If left exists, right should exist as well");
truncated += 1; truncated += 1;
} else { } else {
if root.node.complete() { truncated += 1; } if root.node.complete() { truncated += 1; }
@@ -234,19 +233,19 @@ impl Tree {
for next_peak in peaks.into_iter() { for next_peak in peaks.into_iter() {
new_root = self.push_generated( new_root = self.push_generated(
combine_nodes( combine_nodes(
self.resolve_link(new_root), self.resolve_link(new_root)?,
self.resolve_link(next_peak) self.resolve_link(next_peak)?,
) )
); );
} }
for _ in 0..truncated { self.pop(); } for _ in 0..truncated { self.pop(); }
DeleteTransaction { Ok(DeleteTransaction {
new_root, new_root,
truncated, truncated,
} })
} }
/// Length of array representation of the tree. /// Length of array representation of the tree.
@@ -257,8 +256,20 @@ impl Tree {
struct IndexedNode<'a> { struct IndexedNode<'a> {
node: &'a MMRNode, node: &'a Entry,
link: NodeLink, link: EntryLink,
}
impl<'a> IndexedNode<'a> {
fn left(&self) -> Result<EntryLink, Error> {
self.node.left().map_err(|e| e.augment(self.link))
}
fn right(&self) -> Result<EntryLink, Error> {
self.node.right().map_err(|e| e.augment(self.link))
}
} }
fn combine_data(left: &NodeData, right: &NodeData) -> NodeData { fn combine_data(left: &NodeData, right: &NodeData) -> NodeData {
@@ -280,10 +291,9 @@ fn combine_data(left: &NodeData, right: &NodeData) -> NodeData {
} }
} }
fn combine_nodes<'a>(left: IndexedNode<'a>, right: IndexedNode<'a>) -> MMRNode { fn combine_nodes<'a>(left: IndexedNode<'a>, right: IndexedNode<'a>) -> Entry {
MMRNode { Entry {
left: Some(left.link), kind: EntryKind::Node(left.link, right.link),
right: Some(right.link),
data: combine_data(&left.node.data, &right.node.data), data: combine_data(&left.node.data, &right.node.data),
} }
} }
@@ -291,7 +301,7 @@ fn combine_nodes<'a>(left: IndexedNode<'a>, right: IndexedNode<'a>) -> MMRNode {
#[cfg(test)] #[cfg(test)]
mod tests { mod tests {
use super::{MMRNode, NodeData, Tree, NodeLink}; use super::{Entry, NodeData, Tree, EntryLink, EntryKind};
use quickcheck::TestResult; use quickcheck::TestResult;
fn leaf(height: u32) -> NodeData { fn leaf(height: u32) -> NodeData {
@@ -326,25 +336,27 @@ mod tests {
} }
} }
fn initial() -> (NodeLink, Tree) { fn initial() -> (EntryLink, Tree) {
let node1: MMRNode = leaf(1).into(); let node1: Entry = leaf(1).into();
let node2: MMRNode = leaf(2).into(); let node2: Entry = leaf(2).into();
let node3 = MMRNode { let node3 = Entry {
data: node(1, 2), data: node(1, 2),
left: Some(NodeLink::Stored(0)), kind: EntryKind::Leaf,
right: Some(NodeLink::Stored(1)),
}; };
(NodeLink::Stored(2), Tree::populate(vec![node1, node2, node3])) (EntryLink::Stored(2), Tree::populate(vec![node1, node2, node3]))
} }
// returns tree with specified number of leafs and it's root // returns tree with specified number of leafs and it's root
fn generated(length: u32) -> (Tree, NodeLink) { fn generated(length: u32) -> (Tree, EntryLink) {
assert!(length >= 3); assert!(length >= 3);
let (mut root, mut tree) = initial(); let (mut root, mut tree) = initial();
for i in 2..length { for i in 2..length {
root = tree.append_leaf(root, leaf(i+1).into()).new_root; root = tree
.append_leaf(root, leaf(i+1).into())
.expect("Failed to append")
.new_root;
} }
(tree, root) (tree, root)
@@ -355,9 +367,11 @@ mod tests {
let (root, mut tree) = initial(); let (root, mut tree) = initial();
// ** APPEND 3 ** // ** APPEND 3 **
let append_tx = tree.append_leaf(root, leaf(3)); let append_tx = tree
.append_leaf(root, leaf(3))
.expect("Failed to append");
let new_root_link = append_tx.new_root; let new_root_link = append_tx.new_root;
let new_root = tree.resolve_link(new_root_link).node; let new_root = tree.resolve_link(new_root_link).expect("Failed to resolve root").node;
// initial tree: (2) // initial tree: (2)
// / \ // / \
@@ -376,9 +390,12 @@ mod tests {
assert_eq!(append_tx.appended.len(), 1); assert_eq!(append_tx.appended.len(), 1);
// ** APPEND 4 ** // ** APPEND 4 **
let append_tx = tree.append_leaf(new_root_link, leaf(4)); let append_tx = tree
.append_leaf(new_root_link, leaf(4))
.expect("Failed to append");
let new_root_link = append_tx.new_root; let new_root_link = append_tx.new_root;
let new_root = tree.resolve_link(new_root_link).node; let new_root = tree.resolve_link(new_root_link).expect("Failed to resolve root").node;
// intermediate tree: // intermediate tree:
// (4g) // (4g)
@@ -398,13 +415,15 @@ mod tests {
// and new root, (6) is stored one // and new root, (6) is stored one
assert_eq!(new_root.data.end_height, 4); assert_eq!(new_root.data.end_height, 4);
assert_eq!(append_tx.appended.len(), 3); assert_eq!(append_tx.appended.len(), 3);
assert_matches!(new_root_link, NodeLink::Stored(6)); assert_matches!(new_root_link, EntryLink::Stored(6));
// ** APPEND 5 ** // ** APPEND 5 **
let append_tx = tree.append_leaf(new_root_link, leaf(5)); let append_tx = tree
.append_leaf(new_root_link, leaf(5))
.expect("Failed to append");
let new_root_link = append_tx.new_root; let new_root_link = append_tx.new_root;
let new_root = tree.resolve_link(new_root_link).node; let new_root = tree.resolve_link(new_root_link).expect("Failed to resolve root").node;
// intermediate tree: // intermediate tree:
// ( 6 ) // ( 6 )
@@ -426,16 +445,18 @@ mod tests {
// and new root, (8g) is generated one // and new root, (8g) is generated one
assert_eq!(new_root.data.end_height, 5); assert_eq!(new_root.data.end_height, 5);
assert_eq!(append_tx.appended.len(), 1); assert_eq!(append_tx.appended.len(), 1);
assert_matches!(new_root_link, NodeLink::Generated(_)); assert_matches!(new_root_link, EntryLink::Generated(_));
tree.for_children(new_root_link, |l, r| { tree.for_children(new_root_link, |l, r| {
assert_matches!(l, NodeLink::Stored(6)); assert_matches!(l, EntryLink::Stored(6));
assert_matches!(r, NodeLink::Stored(7)); assert_matches!(r, EntryLink::Stored(7));
}); });
// *** APPEND #6 *** // *** APPEND #6 ***
let append_tx = tree.append_leaf(new_root_link, leaf(6)); let append_tx = tree
.append_leaf(new_root_link, leaf(6))
.expect("Failed to append");
let new_root_link = append_tx.new_root; let new_root_link = append_tx.new_root;
let new_root = tree.resolve_link(new_root_link).node; let new_root = tree.resolve_link(new_root_link).expect("Failed to resolve root").node;
// intermediate tree: // intermediate tree:
// ( 8g ) // ( 8g )
@@ -459,17 +480,22 @@ mod tests {
// and new root, (8g) is generated one // and new root, (8g) is generated one
assert_eq!(new_root.data.end_height, 6); assert_eq!(new_root.data.end_height, 6);
assert_eq!(append_tx.appended.len(), 2); assert_eq!(append_tx.appended.len(), 2);
assert_matches!(new_root_link, NodeLink::Generated(_)); assert_matches!(new_root_link, EntryLink::Generated(_));
tree.for_children(new_root_link, |l, r| { tree.for_children(new_root_link, |l, r| {
assert_matches!(l, NodeLink::Stored(6)); assert_matches!(l, EntryLink::Stored(6));
assert_matches!(r, NodeLink::Stored(9)); assert_matches!(r, EntryLink::Stored(9));
}); });
// *** APPEND #7 *** // *** APPEND #7 ***
let append_tx = tree.append_leaf(new_root_link, leaf(7)); let append_tx = tree
.append_leaf(new_root_link, leaf(7))
.expect("Failed to append");
let new_root_link = append_tx.new_root; let new_root_link = append_tx.new_root;
let new_root = tree.resolve_link(new_root_link).node; let new_root = tree
.resolve_link(new_root_link)
.expect("Failed to resolve root")
.node;
// intermediate tree: // intermediate tree:
// (---8g---) // (---8g---)
@@ -495,17 +521,19 @@ mod tests {
// and new root, (8g) is generated one // and new root, (8g) is generated one
assert_eq!(new_root.data.end_height, 7); assert_eq!(new_root.data.end_height, 7);
assert_eq!(append_tx.appended.len(), 1); assert_eq!(append_tx.appended.len(), 1);
assert_matches!(new_root_link, NodeLink::Generated(_)); assert_matches!(new_root_link, EntryLink::Generated(_));
tree.for_children(new_root_link, |l, r| { tree.for_children(new_root_link, |l, r| {
assert_matches!(l, NodeLink::Generated(_)); assert_matches!(l, EntryLink::Generated(_));
assert_matches!(r, NodeLink::Stored(10)); assert_matches!(r, EntryLink::Stored(10));
}); });
} }
#[test] #[test]
fn truncate_simple() { fn truncate_simple() {
let (mut tree, root) = generated(9); let (mut tree, root) = generated(9);
let delete_tx = tree.truncate_leaf(root); let delete_tx = tree
.truncate_leaf(root)
.expect("Failed to truncate");
// initial tree: // initial tree:
// //
@@ -531,14 +559,16 @@ mod tests {
// so (15) is truncated // so (15) is truncated
// and new root, (14) is a stored one now // and new root, (14) is a stored one now
assert_matches!(delete_tx.new_root, NodeLink::Stored(14)); assert_matches!(delete_tx.new_root, EntryLink::Stored(14));
assert_eq!(tree.len(), 15); assert_eq!(tree.len(), 15);
} }
#[test] #[test]
fn truncate_generated() { fn truncate_generated() {
let (mut tree, root) = generated(10); let (mut tree, root) = generated(10);
let delete_tx = tree.truncate_leaf(root); let delete_tx = tree
.truncate_leaf(root)
.expect("Failed to truncate");
// initial tree: // initial tree:
// //
@@ -565,21 +595,21 @@ mod tests {
// new root is generated // new root is generated
assert_matches!(delete_tx.new_root, NodeLink::Generated(_)); assert_matches!(delete_tx.new_root, EntryLink::Generated(_));
// left is 14 and right is 15 // left is 14 and right is 15
let (left_root_child, right_root_child) = { let (left_root_child, right_root_child) = {
let root = tree.resolve_link(delete_tx.new_root); let root = tree.resolve_link(delete_tx.new_root).expect("Failed to resolve");
( (
root.node.left.expect("there should be left child for root"), root.left().expect("Expected node"),
root.node.right.expect("there should be right child for root"), root.right().expect("Expected node"),
) )
}; };
assert_matches!( assert_matches!(
(left_root_child, right_root_child), (left_root_child, right_root_child),
(NodeLink::Stored(14), NodeLink::Stored(15)) (EntryLink::Stored(14), EntryLink::Stored(15))
); );
// two stored nodes should leave us (leaf 16 and no longer needed node 17) // two stored nodes should leave us (leaf 16 and no longer needed node 17)
@@ -594,11 +624,14 @@ mod tests {
assert_eq!(tree.len(), 3); assert_eq!(tree.len(), 3);
for i in 0..2 { for i in 0..2 {
root = tree.append_leaf(root, leaf(i+3)).new_root; root = tree
.append_leaf(root, leaf(i+3))
.expect("Failed to append")
.new_root;
} }
assert_eq!(tree.len(), 7); assert_eq!(tree.len(), 7);
tree.truncate_leaf(root); tree.truncate_leaf(root).expect("Failed to truncate");
assert_eq!(tree.len(), 4); assert_eq!(tree.len(), 4);
} }
@@ -610,12 +643,18 @@ mod tests {
assert_eq!(tree.len(), 3); assert_eq!(tree.len(), 3);
for i in 0..4094 { for i in 0..4094 {
root = tree.append_leaf(root, leaf(i+3)).new_root; root = tree
.append_leaf(root, leaf(i+3))
.expect("Failed to append")
.new_root;
} }
assert_eq!(tree.len(), 8191); // 4096*2-1 (full tree) assert_eq!(tree.len(), 8191); // 4096*2-1 (full tree)
for _ in 0..2049 { for _ in 0..2049 {
root = tree.truncate_leaf(root).new_root; root = tree
.truncate_leaf(root)
.expect("Failed to truncate")
.new_root;
} }
assert_eq!(tree.len(), 4083); // 4095 - log2(4096) assert_eq!(tree.len(), 4083); // 4095 - log2(4096)
@@ -629,13 +668,16 @@ mod tests {
} else { } else {
let (mut root, mut tree) = initial(); let (mut root, mut tree) = initial();
for i in 0..number { for i in 0..number {
root = tree.append_leaf(root, leaf(i+3)).new_root; root = tree
.append_leaf(root, leaf(i+3))
.expect("Failed to append")
.new_root;
} }
for _ in 0..number { for _ in 0..number {
root = tree.truncate_leaf(root).new_root; root = tree.truncate_leaf(root).expect("Failed to truncate").new_root;
} }
TestResult::from_bool(if let NodeLink::Stored(2) = root { true } else { false }) TestResult::from_bool(if let EntryLink::Stored(2) = root { true } else { false })
} }
} }
@@ -645,10 +687,21 @@ mod tests {
} else { } else {
let (mut root, mut tree) = initial(); let (mut root, mut tree) = initial();
for i in 1..(number-1) { for i in 1..(number-1) {
root = tree.append_leaf(root, leaf(i+2)).new_root; root = tree
.append_leaf(root, leaf(i+2))
.expect("Failed to append")
.new_root;
} }
TestResult::from_bool(tree.resolve_link(root).node.leaf_count() == number) TestResult::from_bool(
tree
.resolve_link(root)
.expect("Failed to resolve root")
.node
.leaf_count()
==
number
)
} }
} }
@@ -658,15 +711,15 @@ mod tests {
} else { } else {
let (mut root, mut tree) = initial(); let (mut root, mut tree) = initial();
for i in 1..(number-1) { for i in 1..(number-1) {
root = tree.append_leaf(root, leaf(i+2)).new_root; root = tree.append_leaf(root, leaf(i+2)).expect("Failed to append").new_root;
} }
TestResult::from_bool( TestResult::from_bool(
if number & number - 1 == 0 { if number & number - 1 == 0 {
if let NodeLink::Stored(_) = root { true } if let EntryLink::Stored(_) = root { true }
else { false } else { false }
} else { } else {
if let NodeLink::Generated(_) = root { true } if let EntryLink::Generated(_) = root { true }
else { false } else { false }
} }
) )
@@ -681,20 +734,20 @@ mod tests {
} else { } else {
let (mut root, mut tree) = initial(); let (mut root, mut tree) = initial();
for i in 0..add { for i in 0..add {
root = tree.append_leaf(root, leaf(i+3)).new_root; root = tree.append_leaf(root, leaf(i+3)).expect("Failed to append").new_root;
} }
for _ in 0..delete { for _ in 0..delete {
root = tree.truncate_leaf(root).new_root; root = tree.truncate_leaf(root).expect("Failed to truncate").new_root;
} }
let total = add - delete + 2; let total = add - delete + 2;
TestResult::from_bool( TestResult::from_bool(
if total & total - 1 == 0 { if total & total - 1 == 0 {
if let NodeLink::Stored(_) = root { true } if let EntryLink::Stored(_) = root { true }
else { false } else { false }
} else { } else {
if let NodeLink::Generated(_) = root { true } if let EntryLink::Generated(_) = root { true }
else { false } else { false }
} }
) )
@@ -707,10 +760,10 @@ mod tests {
} else { } else {
let (mut root, mut tree) = initial(); let (mut root, mut tree) = initial();
for i in 0..add { for i in 0..add {
root = tree.append_leaf(root, leaf(i+3)).new_root; root = tree.append_leaf(root, leaf(i+3)).expect("Failed to append").new_root;
} }
for _ in 0..delete { for _ in 0..delete {
root = tree.truncate_leaf(root).new_root; root = tree.truncate_leaf(root).expect("Failed to truncate").new_root;
} }
let total = add - delete + 2; let total = add - delete + 2;